
Interior point and outer approximation

methods for conic optimization

Chris Coey

April 22, 2022

Introduction

Conic optimization

Primal over x ∈ Rn

inf c ′x :

b − Ax = 0

h − Gx ∈ K

Dual over y ∈ Rp, z ∈ Rq

sup −b′y − h′z :

c + A′y + G ′z = 0

z ∈ K∗

K is a proper cone: convex, closed, solid, and pointed. In practice,

K = K1 × · · · × KK is a Cartesian product of recognized cones.

Usually exists a certificate of optimality or of primal or dual infeasibility.

Generalizes LP, SOCP, SDP, which cannot represent e.g. u ≥ exp(w).

For mixed integer (MI) conic problems, the primal has xi ∈ Z,∀i ∈ JNK.

Any (MI) convex problem may be homogenized into (MI) conic form.

Conic duality enables powerful algorithms for (MI) convex problems.

1

Perspective transformations

exp(w)

epi exp = {(u,w) : u ≥ exp(w)}

w

u

2

Perspective transformations

1

epi exp at v = 1

epi per exp = {(u, v ,w) :

v > 0, u ≥ v exp(w/v)}

wv

u

3

Perspective transformations

1

epi exp at v = 1

epi per exp = {(u, v ,w) :

v > 0, u ≥ v exp(w/v)}

wv

u

3

Goals and contributions

We improve the generality and practical performance of:

• interior point methods (IPMs) for continuous conic formulations,

• outer approximation methods (OAMs) for MI conic formulations.

We introduce new solvers, Hypatia (IPM) and Pajarito (OAM):

• open source and accessible through JuMP/MathOptInterface,

• highly extensible/customizable algorithmic components,

• generic cone interfaces allow users to add new cones.

We develop efficient, stable oracle procedures for dozens of useful cones.

We model hundreds of (MI) conic formulations from 50 applied examples.

Our benchmarking explores which algorithmic features and what types of

conic formulations lead to the best performance of IPMs/OAMs.

We argue for expanding the class of cones recognized by conic solvers.

4

Chapters 1-3: continuous conic

optimization

Chapter 1: IPMs and Hypatia

Conic IPMs

Conic IPMs with polynomial iteration complexity use logarithmically

homogeneous self-concordant barriers (LHSCBs) for proper cones.

E.g. − log for R≥, − logdet for PSD matrices S⪰.

Until recently, conic solvers only supported the standard symmetric cones.

The Skajaa and Ye (2015) IPM (SY) supports nonsymmetric cones.

SY needs tractable oracles for each cone in the primal: an initial interior

point, feasibility check, and gradients and Hessians for the LHSCB.

We generalize SY to support any exotic cone K that has tractable

LHSCB oracles for either K or K∗.

We define two dozen exotic cones through the cone interface.

Most only have analytic/closed-form oracles for K or K∗, not both.

5

IPM stepping procedures

The homogeneous self-dual embedding (HSDE) is a conic feasibility

problem, a solution to which provides a conic certificate (if one exists).

SY approximately traces the central path (CP) to an HSDE solution.

• Prediction steps take us towards a solution, by treating the CP like a

dynamical system. A line search maintains CP proximity.

• Centering steps take us towards the CP, from which good prediction

directions can be obtained. This is like a Newton step.

We enhance the practical performance of SY’s stepping procedure.

• Use a less restrictive CP proximity condition.

• Adjust the search directions using a new third order directional

derivative barrier oracle, and search on a quadratic curve.

• Combine the prediction and centering phases.

6

Stepping enhancements

final

initial

CP

7

Stepping enhancements

final

initial

tight prox

7

Stepping enhancements

final

initial

tight prox

pred

cent

7

Stepping enhancements

final

initial

tight prox

loose prox

7

Stepping enhancements

final

initial

tight prox

loose prox

7

Stepping enhancements

final

initial

loose prox

7

Stepping enhancements

final

initial
no 3rd order

curve

7

Stepping enhancements

final

initial

curve

7

Stepping enhancements

final

initial

cent/pred
comb

7

Stepping enhancements

final

initial

comb

7

Stepping enhancement results

We generate a benchmark set of 379 instances over Hypatia’s cones.

• From 37 applied examples, each with multiple formulation types.

• Most are primal-dual feasible, some are primal or dual infeasible.

• All are small-medium and solve in under 30 minutes.

We set tolerances to around 10−7 (for most) and verify certificates.

We report shifted geometric means over the instances solved.

stepper solved iterations impr time (ms) impr

SY 371 101.3 - 2131 -

prox 369 64.7 36% 1317 38%

third 372 29.7 54% 742 44%

comb 367 18.3 38% 624 16%

Overall: iterations and solve time improve by at least 80% and 70%.

8

Solving for directions

The HSDE has n + p + 2q + 2 variables (x , y , z , τ, s, κ).

At each iteration, we compute 1-4 search directions from a linear system

with fixed LHS and different RHS vectors.

The LHS is a square, sparse structured matrix of 6× 6 blocks, containing

Hessian evaluations and the fixed affine data c ,A, b,G , h.

Eliminating s, κ, τ yields a symmetric indefinite system in n + p + q

variables (x , y , z). We can use a sparse LDLT of the LHS:0 A′ G ′

A 0 0

G 0 −H−1


Most conic IPMs use this Sym-Indef method; good for sparse LP/SOCP.

9

Solving for directions

But for dense A,G or H, our QR-Cholesky method is often better.

• Use a precomputed QR factorization of A′ to eliminate the p primal

equalities (and y), reducing x to dimension n − p.

• Eliminate z to get a positive definite system in x .

• Use a dense Cholesky of side dimension n − p.

Hypatia’s directions solver interface allows plugging in custom linear

system techniques that leverage formulation-specific structure.

Unlike Sym-Indef, QR-Cholesky only needs (inverse) Hessian products.

The CP proximity checks only use inverse Hessian vector products.

Hence with new oracles that apply the (inverse) Hessian to arrays

implicitly, we have no need to form and factorize explicit Hessians.

These oracles are known for symmetric cones, by Jordan algebra theory.

10

Chapter 2: continuous

formulations and IPM oracles

Natural conic formulations

Advanced solvers such as MOSEK 9 only recognize the standard cones:

• symmetric: nonnegative, real PSD, second order (u ≥ ∥w∥),
• 3-D nonsymmetric: exponential, power.

Many convex problems can be represented through conic extended

formulations (EFs) using only the standard cones.

But natural formulations (NFs) using exotic cones are usually simpler.

We define three classes of Hypatia’s cones with LHSCB oracles:

• PSD slice cones: intersections of slices of the PSD cone,

• spectral norm cones: epigraphs of infinity norms or spectral norms,

• spectral function cones: epigraphs/hypographs of spectral functions.

For these cones and their dual cones, the best EFs have larger dimensions

(n, p, q) and often larger barrier parameters (ν) than the NFs.

11

Examples and IPM oracles

In Chapters 2 and 3, we formulate 11 applied problems over these classes.

E.g. portfolio opt., experiment design, distribution estimation, matrix

completion, multi-response regression, convex regression,

classical-quantum channel capacity, polynomial minimization.

For each example, over a wide range of sizes, we find that Hypatia solves

the NFs more efficiently than both Hypatia and MOSEK 9 solve the EFs.

The NFs are also simpler to write and interpret conic certificates for, and

more efficient to build using JuMP.

What makes this possible? Efficient, numerically-stable oracles.

• Chapter 2: oracles for PSD-slice and spectral norm cones.

• Chapter 3: new LHSCBs and oracles for spectral function cones.

12

Spectral and nuclear norm cones

We vectorize W ∈ Rd×s as w = vec(W) ∈ Rds by stacking columns.

Suppose d ≤ s. The spectral/nuclear norm epigraph cones are:

Kℓspec =
{
(u,w) : u ≥ σ1(W)

}
,

K∗
ℓspec =

{
(u,w) : u ≥

∑
i∈JrKσi (W)

}
.

The EF for (u,w) ∈ K∗
ℓspec

⊂ R1+ds uses a linear and a PSD constraint:

∃Θ ∈ Sd ,Λ ∈ Ss , u ≥ (tr(Θ) + tr(Λ))/2,
[

Θ W
W ′ Λ

]
⪰ 0.

For Sd the vectorized triangle length is sd(d) = d(d +1)/2. The EF has:

• sd(d) + sd(s) auxiliary variables,

• conic dimension of 1 + sd(d + s): larger than 1 + ds,

• barrier parameter ν of 1 + d + s: larger than 1 + d (for Kℓspec).

13

Matrix (multi-response) regression example

We estimate a coefficient matrix F given a design matrix X and a

response matrix Y :

min ∥Y − FX∥nuc + λ∥F∥2.

A natural conic formulation over ρ, µ,F is:

min ρ+ λµ :

(ρ, vec(Y − FX)) ∈ K∗
ℓspec ,

(µ, vec(F)) ∈ Kℓ2 .

We generate random instances with λ = 0.1, where:

• F is 15× 15,

• Y − FX is 15× k, for varying k ≥ 15.

14

Solving matrix regression

101 102 103 104 105
0.1

1

10

102

103

k

so
lv
e
ti
m
e
(s
)

Hypatia NF
Hypatia EF
MOSEK EF

Hypatia-NF consistently takes 9 or 10 IPM iterations.

At k = 3× 105, K∗
ℓspec

has dimension 1 + 15× k ≈ 4.5× 106.

At k = 106 we ran out of RAM in preprocessing, but we can turn this off.

15

New spectral norm cone oracles

We do not have an LHSCB for K∗
ℓspec

with analytic/closed-form oracles.

Nesterov and Nemirovskii (1994) give a (1 + d)-LHSCB for Kℓspec :

Γ(u,w) = − log(u)− logdet(uI (d)−WW ′/u).

The vector infinity norm cone and symmetric spectral norm cone are

slices of Kℓspec , so the same LHSCB applies. We specialize the oracles.

Our oracles depend on a thin singular value decomposition (SVD) of W .

The implementations are optimized for speed, memory, and numerics.

We derive a formula for the inverse Hessian product, i.e. z → (∇2Γ)−1z .

• Uses O(ds) memory and O(d2s) time.

The naive alternative Cholesky-factorizes the explicit Hessian in S1+ds .

• Uses O(d2s2) memory and O(d3s3) time.

16

Comparing the inverse Hessian product procedures

Our formula is much more efficient and numerically stable in practice.

• We solve NF instances for matrix regression using Hypatia.

• At the final PDIPM iterate, we compute z = (∇2Γ)−1(∇Γ).

• We compute the LH condition violation |1− ν−1z ′(∇Γ)|.

102 103 104
10−9

10−6

10−3

100

k

ti
m
e
(s
)
or

vi
ol
at
io
n

time
viol.

formula
naive

17

Chapter 3: barriers and oracles

for spectral function cones

Spectral functions

We often encounter symmetric functions of real vectors or eigenvalues of

symmetric/Hermitian matrices, i.e. spectral functions on Jordan algebras.

Example: experiment design (Boyd and Vandenberghe, 2004).

• Variable µ ∈ C ⊂ Rm is the number of trials for each of m

experiments, and C expresses e.g. nonnegativity, budget.

• F ∈ Rk×m is a menu of experiments for estimating a vector in Rk .

Let W = F Diag(µ)F ′ ∈ Sk . We want a ‘small’ error covariance W−1.

D-optimal: min logdet(W−1) = − logdet(W) = −
∑

i log(λi (W)).

A-optimal: min tr(W−1) =
∑

i (λi (W))−1.

For D-optimal, let K be the epigraph of the perspective of − logdet.

min ψ : µ ∈ C, (ψ, 1, vec(F Diag(µ)F ′)) ∈ K ⊂ R2+sd(k).

18

Solving D-optimal design

Let w = vec(W). An EF for (u, v ,w) ∈ K, using exponential/PSD cones:

∃π ∈ Rk ,Θ ∈ Sk , u ≥ e′π, (πi , v ,Θi,i) ∈ K,∀i ,
[
W Θ
Θ′ Diag(Θ)

]
⪰ 0.

We let m = 2k and vary k . Recall µ ∈ Rm and W = F Diag(µ)F ′ ∈ Sk .

200 400 600 800

10−1

100

101

102

103

k

ti
m
e
(s
)

Hypatia NF
Hypatia EF
MOSEK EF

19

A class of spectral function cones

Let V be a Jordan algebra of rank d and let Q be its cone of squares,

e.g. for V = Rd ,Q = Rd
≥ and for V = Sd ,Q = Sd⪰.

Let h be a separable spectral function on intQ. If λ ∈ Rd
> are the

eigenvalues of w ∈ intQ, then tr h(w) = h(λ) =
∑

ih(λi).

Suppose h has the matrix monotone derivative (MMD) property:

w1 ⪰ w2 ⪰ 0 ⇒ h′(w1) ⪰ h′(w2). This implies h is convex.

The MMD cone is the epigraph of the perspective of tr h:

KMMD = cl
{
(u, v ,w) ∈ R× R> × intQ : u ≥ v tr h(w/v)

}
.

We show KMMD has an LHSCB with near-optimal ν = 2 + d :

Γ(u, v ,w) = − log
(
u − v tr h(w/v)

)
− log(v)− logdet(w).

Our proof is via domain compatibility (Nesterov and Nemirovskii, 1994).

We use the matrix monotone integral representation of Löwner (1934).

20

Modeling with MMD cones

The convex conjugate of h is h∗, also a spectral function but not MMD.

K∗
MMD = cl

{
(u, v ,w) ∈ R> × R×R : v ≥ u tr h∗(w/u)

}
.

h h′ R h∗

NegLog − log(x) −x−1 Q −1− log(x)

NegEntropy x log(x) 1 + log(x) V exp(−1− x)

NegSqrt −
√
x − 1

2x
−1/2 Q 1

4x
−1

NegPower, p ∈ (0, 1) −xp −pxp−1 Q −(p − 1)(x/p)q

Power, p ∈ (1, 2] xp pxp−1 V (p − 1)(x−/p)
q

We predefine these MMD functions in Hypatia through simple univariate

oracles, from which all our efficient/stable KMMD oracles are derived.

KMMD and K∗
MMD allow representing many common disciplined convex

programming (DCP) atoms conically, at minimal cost in dimension or ν.

21

Comparing the inverse Hessian product procedures

We run the experiment we used for Kℓspec , on two NegEntropy examples.

10 100 1000

10−11

10−7

10−3

101

d

ti
m
e
(s
)
or

vi
ol
at
io
n

Nonparametric dist. (Rd)

10 100 d

Experiment design (Sd)

time viol. formula naive

22

Classical-quantum channel capacity example

The variable ρ ∈ Rd is a probability distribution, and each Pi ∈ Hd
⪰ is a

density matrix (Sutter et al., 2015). φ is the trace of NegEntropy on Hd
⪰.

min φ
(∑

i∈JdKρiPi

)
−
∑

i∈JdKρiφ(Pi) : e′ρ = 1, ρ ≥ 0.

0 200 400 600

10−1

100

101

102

103

d

ti
m
e
(s
)

Hypatia-NF
Hypatia-EF
MOSEK-EF

23

Chapters 4-5: mixed integer

conic optimization

Chapter 4: OAMs and Pajarito

Branch-and-bound with polyhedral relaxations

B&B algorithms recursively partition the possible values of the integer

variables, using bounds/solutions from convex subproblems.

MILP solvers use advanced cutting plane techniques and heuristics, and

LP Simplex solvers can rapidly reoptimize after cuts are added.

An OAM solves a polyhedral relaxation of the subproblem at each node,

so the convex subproblem can be solved less frequently.

Hypothetical: you have an MILP that Gurobi solves well, but now you

need to add a convex constraint. Extend Gurobi to an OAM.

Bonami, Kılınç, and Linderoth (2012): Bonmin’s OAM beats plain B&B.

But Bonmin uses NLP solvers and gradient cuts, which need smoothness.

Conic solvers handle nonsmoothness, and good MI convex formulations

are often conic anyway: e.g. ideal formulation for union of convex sets.

24

A conic-duality-based OAM

Since K = {s : z ′s ≥ 0,∀z ∈ K∗}, we have:

h − Gx ∈ K ⇔ z ′(h − Gx) ≥ 0 ∀z ∈ K∗

Any finite subset of K∗ cuts gives a polyhedral relaxation.

We present the first conic-duality-based B&B OA algorithm.

• K∗ cuts from dual solutions/rays for continuous conic subproblems.

• If no strong duality failures, it detects infeasibility, unboundedness,

or returns an optimal solution in finite time.

For cone K, we use the following K∗ cuts oracles:

• initial cuts: builds a fixed initial polyhedral relaxation of K,

• subproblem cuts: given z ∈ K∗, adds cuts at least as strong as z ,

• separation cuts: given a point s, checks whether s ∈ K
(approximately) and if not, adds cuts that separate s.

25

Pajarito’s software architecture

To leverage powerful external MILP solvers through a solver independent

interface, our practical implementations in Pajarito differ from our

idealized B&B algorithm.

MI-conic model: CBF, Convex.jl, JuMP

MI-conic solver: Pajarito

Continuous solver: CSDP, ECOS,

MOSEK, Hypatia, SCS, SDPA

MILP solver: CBC, CPLEX, GLPK,

HiGHS, Gurobi, MOSEK, SCIP

MathOptInterface

In 2018, benchmarking on 120 MISOCPs: Pajarito greatly outperformed

Bonmin, and converged more reliably than CPLEX (in similar time).

26

Iterative algorithm

solve relaxationadd initial and relaxation cuts

solve OA model infeasible

optimalupdate L; are L,U converged?

integer sub-solution repeated?

solve subproblem; feasible?

update U, incumbent

add certificate cuts

solution conic feasible?

update U, incumbent

add separation cuts

no

no

yes

yes

noyes no

yes

27

MIP-solver-driven (single tree) algorithm

solve relaxation infeasible

add initial and relaxation cuts

call branch-and-cut

solver on OA model
optimal

integer sub-solution repeated?

solve subproblem; feasible?

add certificate cutsstore solution

solution conic feasible?

add separation cuts

add stored solution

heuristic callback

lazy callback
integral solution

no yes

noyes no

28

Chapter 5: mixed integer

formulations and OAM oracles

MI conic formulations for OAMs

We implement K∗ cut oracles for the PSD slice, spectral norm, and

spectral function cones through Pajarito’s generic cone interface.

We formulate a dozen MI-conic examples, including sparse inverse

covariance estimation, experiment design, matrix completion, polynomial

regression, modular device design, and some new OR-flavor problems.

We compare OAM performance under NFs and EFs.

• We use Pajarito’s iterative algorithm, with Hypatia and Gurobi.

• OA iterations measure the strength/quality of polyhedral relaxations.

For the vector domain spectral function cones, we have EFs with 3-D

cones. These improve iteration counts by tightening the relaxations.

For the other cones, EFs are generally slow and numerically unstable.

29

Primal PSD slice cones

A PSD slice cone is an intersection of slices of real/complex PSD cones:

K = {s ∈ Rd : Λl(s) ⪰ 0,∀l ∈ JrK},

where Λl : Rd → Sol ,∀l ∈ JrK are linear operators. The EF is obvious.

E.g. PSD, sparse PSD, and dual polynomial sum of squares (SOS) cones.

Consider a PSD slice cone constraint s ∈ K.

• For initial cuts, we impose diag(Λl(s)) ≥ 0.

• To separate a point s̄ ∈ Rd , we compute eigendecompositions:

Λl(s̄) =
∑

i∈JolKσl,ivl,iv
′
l,i ,

and add one separation cut for each negative eigenvalue:

⟨vl,iv ′
l,i ,Λl(s)⟩ ≥ 0 ∀i ∈ JolK : σl,i < 0.

• For certain K, we can decompose a z ∈ K∗ into extreme rays of K∗.

30

Dual cones of PSD slice cones

Oracles for K∗ are more ad-hoc than those for K.

Let Λ∗
l : Sol → Rd be the adjoint of Λl , ∀l ∈ JrK. Then:

K∗ =
{
s ∈ Rd : ∃S1, . . . ,Sr ⪰ 0, s =

∑
l∈JrKΛ

∗
l (Sl)

}
.

An EF for K∗ often requires many auxiliary variables, for example:

• dual sparse PSD cones, which are PSD-completable matrix cones,

• primal SOS cones, which allow natural MI polynomial models.

If K is a dual SOS cone parametrized by Pl ∈ Rd×ol , ∀l ∈ JrK:

Λl(s) = P ′
l Diag(s)Pl , Λ∗

l (Sl) = diag
(
PlΘlP

′
l

)
.

In this case, s ≥ 0 is a simple and strong set of initial fixed cuts.

31

Optimization-based separation

For a primal SOS cone, we don’t know an analytic procedure for checking

feasibility of a point and obtaining separation cuts.

Let s̄ be the point and C be the proper cone. We solve a conic problem:

(P) min 0 : s̄ ∈ C (D) maxz −s̄ ′z : z ∈ C∗

P has an optimal solution if and only if s̄ is feasible.

If s̄ is infeasible, D has an improving ray z ∈ C∗ with s̄ ′z < 0. So z

provides a separation cut.

Hypatia is ideal for solving this separation problem.

• Using QR-Cholesky, no factorizations are needed (besides Hessians).

• We only need one separation model for each unique cone.

• We just modify s̄ and re-solve without overhead/allocations.

32

Polynomial facility location example

We have a capacitated facility location problem with nonnegative

polynomial flows over continuous time, from t = 0 to t = 1:

• facility i ∈ JnK has fixed cost fi , maximum output rate ui , and is

opened if binary variable xi = 1,

• customer j ∈ JmK has demand rate dj ,

• the cost per unit of flow from i to j is ci,j ,

• the degree-d polynomial variable yi,j ∈ R1,d [t] is the flow rate from i

to j over t ∈ [0, 1],

• we minimize total cost, satisfying capacities and demands.

We formulate the high-level MI polynomial model before converting to an

equivalent MI-conic problem over SOS cones.

33

Formulation for polynomial facility location

min f ′x +
∑

i,jci,j
∫ 1

0
yi,j(t)dt :∑

jyi,j(t) ≤ uixi ∀i ∈ JnK, t ∈ [0, 1],∑
iyi,j(t) ≥ dj ∀j ∈ JmK, t ∈ [0, 1],

yi,j(t) ≥ 0 ∀i ∈ JnK, j ∈ JmK, t ∈ [0, 1],

x ∈ {0, 1}n.

We reinterpret the polynomial variables in the interpolant basis as

yi,j ∈ R1+d and linearize the integral term. The MI-conic model is:

min f ′x +
∑

i,jci,jw
′yi,j :

uixie −
∑

jyi,j ∈ KSOS(P) ∀i ∈ JnK,∑
iyi,j − dje ∈ KSOS(P) ∀j ∈ JmK,

yi,j ∈ KSOS(P) ∀i ∈ JnK, j ∈ JmK,

x ∈ {0, 1}n.

34

Solving polynomial facility location

We generate feasible/bounded instances with degree d = 6, varying the

number of facilities n and letting the number of customers be m = 2n.

NF (SOS) EF (PSD)

n st it time st it time

5 co 1 0.2 er 1 2.0

10 co 2 1.2 er 1 19

15 co 2 6.1 tl 4 600

20 co 2 20 tl 3 602

25 co 3 51 tl 2 611

30 co 3 125 tl 0 614

35 co 2 127 tl 0 603

40 co 3 332 tl 0 601

35

Polynomial two-stage stochastic problem

We have n different crops and m equal-sized plots of land for planting:

• per plot, crop i has fixed cost ai and uncertain yield ξi ∼ U(0, 1),

• in stage 1, we decide how many plots of crop i to plant,

• in stage 2, we harvest the ξi units,

• we fulfill our contractual demand for di units,

• we decide how much crop i to buy/sell for prices bi/ci ,

• we minimize the total expected cost.

Stage 2 decomposes by crop. So for crop i , the buy/sell decisions depend

only on ξi .

We represent these with polynomial variables yi , zi ∈ R1,2k [ξi], which

must nonnegative over ξi ∈ [0, 1].

36

Polynomial two-stage stochastic formulation

We first write a high-level stochastic MI polynomial model.

min a′x +
∑

iEξi [biyi (ξi)− cizi (ξi)] :

e′x ≤ m,

x ≥ 0,

ξixi + yi (ξi)− zi (ξi)− di = 0 ∀i ∈ JnK, ξi ∈ [0, 1],

yi (ξi) ≥ 0 ∀i ∈ JnK, ξi ∈ [0, 1],

zi (ξi) ≥ 0 ∀i ∈ JnK, ξi ∈ [0, 1],

x ∈ Zn.

We write the expectations as integrals, then use quadrature to linearize.

The polynomial equality constraint is linear, and the 2n polynomial

inequalities are written with KSOS(P) constraints.

37

Solving the polynomial two-stage stochastic problem

We generate instances with n = 3 crops, varying the half-degree k.

The objective values decrease with k , exhibiting diminishing returns.

NF (SOS) EF (PSD)

k obj st it time st it time

8 16.73477 co 2 0.1 er 2 0.7

16 16.70516 co 2 0.2 er 2 4.1

32 16.69616 co 2 0.5 er 1 67

64 16.69364 co 2 1.6 tl 0 868

128 16.69301 co 2 6.8 ∗ ∗ ∗
256 16.69284 co 1 33 ∗ ∗ ∗
512 16.69280 co 1 234 ∗ ∗ ∗

In future, Pajarito could decompose the conic subproblems by crop.

38

EFs for vector spectral function cones

We support Hypatia’s spectral function cones, e.g. the geomean cone:

Kgeo =
{
(u,w) ∈ R× Rd

≥ : u ≤ geo(w)
}
.

An EF for (u,w) ∈ Kgeo in terms of d 3-D exponential cones is:

∃θ ∈ R, λ ∈ Rd , θ ≥ u, e′λ ≥ 0, (λi , θ,wi) ∈ Kexp,∀i ∈ JdK.

Using the EF in the OA model, we can get tighter polyhedral relaxations.

• Think of Fourier-Motzkin: a polynomial number of EF cuts projects

to an exponential number of NF cuts.

• E.g. the ℓ1 ball needs 2d cuts, but its LP EF only needs 1 + 2d .

Hypatia can still use the NF: we ‘extend’ K∗ cuts and primal solutions.

Generalizes Pajarito’s SOCP EF approach, based on Vielma et al. (2017).

39

OA for a geomean ball constraint

For w ∈ [0, 3]3, we relax geo(w) ≥ 1 with 7 NF K∗ cuts. Note θ = u = 1.

We project the 3-D NF and 6-D EF OAs onto w1,w2. The EF is tighter.

0 1 2 3
0

1

2

3

w1

w
2

geo(w) = 1
NF OA
EF OA

0 1 2 3
−3

−2

−1

0

1

wi

λ
i

λi = log(wi)
ith EF OA

40

Knapsack problem with convex objective

We select xi ≥ 1 units of item i ∈ JnK, with weight bi and value ci .

Given weight budget B > 0, we maximize the geomean of the values.

max geo
(
(cixi)i∈JnK

)
: x ≥ e, b′x ≤ B, x ∈ Zn.

Results for the separation-only algorithm on the continuous relaxation.

0 50 100 150
101

102

103

104

n

it
er
at
io
n
s

EF on
EF off

0 50 100 150

10−2

10−1

100

101

102

n

so
lv
e
ti
m
e
(s
)

EF on
EF off

41

Knapsack integer formulation results

EF OA NF OA

n st it time st it time

3 co 3 0.0 co 5 0.0
6 co 8 0.1 co 34 0.7
9 co 6 17 co 71 165

12 co 9 22 tl 30 600
15 co 6 4.3 tl 253 600
20 co 7 13 tl 76 600
25 co 8 15 tl 109 600
30 co 9 21 tl 175 600
35 co 7 9.7 tl 543 600
40 co 11 3.1 ∗ ∗ ∗
50 co 8 9.5 ∗ ∗ ∗
60 co 8 14 ∗ ∗ ∗
70 co 7 13 ∗ ∗ ∗
80 co 8 9.5 ∗ ∗ ∗
90 co 12 57 ∗ ∗ ∗

100 co 10 409 ∗ ∗ ∗

42

Thoughts and observations

Choosing formulations and algorithmic options

Even just the modeling (before solving) can create bottlenecks.

In Hypatia, linear algebra is the most common bottleneck.

• Preprocessing, linear system solving, Hessian inversions.

• Heuristic: NFs are smaller/simpler.

For Pajarito, formulations matter for both OA and continuous solvers.

• Minimize the primal variable dimension n (e.g. MISOS examples).

• MILP solver likes sparsity and good numerics.

• If continuous solver is a bottleneck, try iterative or separation-only.

• Look for ideal (convex hull) formulations, e.g. copies-of-variables.

• Avoid subproblem strong duality failures: try to bound variables.

JuMP makes it easy to compare formulations and options.

43

Comparing very different algorithms is hard

We are concerned with general purpose (MI) conic algorithms. But we

have not done extensive comparisons with non-IPMs and non-OAMs.

How do we set convergence tolerances and verify solutions?

• Algorithms use very different convergence measures.

• IPMs usually converge to tighter tolerances than 1st order methods.

No other solvers support as many cones as Hypatia/Pajarito.

How to we choose which equivalent conic formulations to run?

• Algorithms use different linear system routines.

• How do we compare solution quality across different formulations?

• EFs can speed up OAMs, but have no benefit for NL-B&B.

It seems we can only do fair comparisons within specific applications.

44

Thank you

45

References i

Bonami, Pierre, Mustafa Kılınç, and Jeff Linderoth (2012).

“Algorithms and Software for Convex Mixed Integer Nonlinear

Programs”. English. In: Mixed Integer Nonlinear Programming.

Ed. by Jon Lee and Sven Leyffer. Vol. 154. The IMA Volumes in

Mathematics and its Applications. Springer New York, pp. 1–39.

isbn: 978-1-4614-1926-6. doi: 10.1007/978-1-4614-1927-3_1.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex

optimization. Cambridge University Press.

Löwner, Karl (1934). “Über monotone matrixfunktionen”. In:

Mathematische Zeitschrift 38.1, pp. 177–216. doi:

10.1007/bf01170633.

Nesterov, Y. and A. Nemirovskii (1994). Interior-point polynomial

algorithms in convex programming. Studies in Applied Mathematics.

Society for Industrial and Applied Mathematics.

45

https://doi.org/10.1007/978-1-4614-1927-3_1
https://doi.org/10.1007/bf01170633

References ii

Skajaa, Anders and Yinyu Ye (2015). “A homogeneous interior-point

algorithm for nonsymmetric convex conic optimization”. In:

Mathematical Programming 150.2, pp. 391–422.

Sutter, David et al. (2015). “Efficient approximation of quantum

channel capacities”. In: IEEE Transactions on Information Theory

62.1, pp. 578–598. doi: 10.1109/tit.2015.2503755. eprint:

1407.8202.

Vielma, Juan Pablo et al. (Sept. 2017). “Extended formulations in

mixed integer conic quadratic programming”. In: Mathematical

Programming Computation 9.3, pp. 369–418. issn: 1867-2957. doi:

10.1007/s12532-016-0113-y.

45

https://doi.org/10.1109/tit.2015.2503755
1407.8202
https://doi.org/10.1007/s12532-016-0113-y

	Introduction
	Chapters 1-3: continuous conic optimization
	Chapter 1: IPMs and Hypatia
	Chapter 2: continuous formulations and IPM oracles
	Chapter 3: barriers and oracles for spectral function cones
	Chapters 4-5: mixed integer conic optimization
	Chapter 4: OAMs and Pajarito
	Chapter 5: mixed integer formulations and OAM oracles
	Thoughts and observations
	References

