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Abstract

Any convex optimization problem may be represented as a conic problem that minimizes a linear
function over the intersection of an affine subspace with a convex cone. An advantage of representing
convex problems in conic form is that, under certain regularity conditions, a conic problem has a
simple and easily checkable certificate of optimality, primal infeasibility, or dual infeasibility. As
a natural generalization of linear programming duality, conic duality allows us to design powerful
algorithms for continuous and mixed-integer convex optimization.

The main goal of this thesis is to improve the generality and practical performance of (i) interior
point methods for continuous conic problems and (ii) outer approximation methods for mixed-integer
conic problems. We implement our algorithms in extensible open source solvers accessible through
the convenient modeling language JuMP. From around 50 applied examples, we formulate continuous
and mixed-integer problems over two dozen different convex cone types, many of which are new.
Our extensive computational experiments with these examples explore which algorithmic features
and what types of equivalent conic formulations lead to the best performance.
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Chapter 0

Introduction

0.1 Overview of chapters

In Chapter 1, we introduce our conic interior point method (IPM) solver, Hypatia. Hypatia’s
generic cone interface allows defining new cones by implementing logarithmically homogeneous
self-concordant barrier (LHSCB) oracles. We describe Hypatia’s algorithm, which generalizes the
nonsymmetric conic IPM by Skajaa and Ye (2015), and we develop advanced IPM stepping techniques
to enhance its practical performance. On a diverse benchmark set of conic instances, our IPM
stepping enhancements reduce iteration counts and solve times by over 80% and 70% respectively.

In Chapter 2, we argue that although many convex problems are representable with conic
extended formulations (EFs) using only the small number of standard cones currently recognized
by advanced conic solvers (such as MOSEK 9), standard conic EFs can be much larger and more
complex than natural formulations (NFs) over cones supported by Hypatia. We focus on three broad
classes of cones in Hypatia: the positive semidefinite slice cones, the infinity/spectral norm cones,
and the spectral function cones. We derive efficient and numerically stable LHSCB oracles for the
first two classes here and for the third class in Chapter 3. For seven applied examples over these
cones, we demonstrate significant computational advantages from solving the NFs with Hypatia
compared to solving the EFs with either Hypatia or MOSEK 9.

In Chapter 3, we consider the class of spectral function cones, which we define from epigraphs
and perspectives of spectral functions on Euclidean Jordan algebras. For two common and useful
subclasses - the root-determinant cones and the matrix monotone derivative cones - we propose
LHSCBs with nearly optimal barrier parameters. We derive efficient, numerically stable procedures
for LHSCB oracles, including closed form inverse Hessian operators. For four applied examples over
these cones, Hypatia solves the NFs more efficiently than Hypatia, MOSEK 9, or ECOS solves the
equivalent EFs.

In Chapter 4, we present the first conic-duality-based branch-and-bound outer approximation
method (OAM) for mixed-integer conic (MI-conic) problems. This finite-time algorithm refines
polyhedral relaxations of the conic constraints using K∗ cuts derived from conic certificates for
continuous subproblems. We describe our practical implementations in Pajarito solver, which
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combine the power of external mixed-integer linear solvers and continuous primal-dual conic solvers.
On a library of mixed-integer second order cone problems, Pajarito greatly outperforms Bonmin and
is competitive with CPLEX. On applied examples over standard cones, we demonstrate the value of
our K∗ cut techniques that strengthen the polyhedral relaxations.

In Chapter 5, we introduce our new open source MI-conic OAM solver, MOIPajarito (the
successor of Pajarito). Like Hypatia, MOIPajarito has a generic cone interface. We describe K∗ cut
oracles for the three broad classes of cones from Chapter 2, enabling us to solve NFs for a dozen new
applied examples. We develop MI-conic formulations for disjunctions and relaxations of common
types of nonconvex constraints, by homogenizing advanced piecewise linear formulations. One of
our formulations is the first logarithmic-sized mixed-integer convex formulation for a finite union of
convex sets with different recession cones. Using particular conic EFs, we accelerate MOIPajarito’s
OAM and extend the MI-conic relaxation techniques to the high-dimensional nonconvex setting.

0.2 Main sources and collaborations

Chapter 1 follows Coey, Kapelevich, and Vielma (2021d), though material on PSD slice oracles
has been moved to Chapter 2, and some material from Coey, Kapelevich, and Vielma (2021e) on
Hypatia solver has been added. Chapter 2 loosely follows Coey, Kapelevich, and Vielma (2021e),
and we have added new cone and EF descriptions and new spectral norm cone oracles. Chapter 3
closely follows Coey, Kapelevich, and Vielma (2021a). This thesis does not include relevant material
on new sum-of-squares cones in Kapelevich, Coey, and Vielma (2021). Chapter 4 follows Coey,
Lubin, and Vielma (2020), though we have updated the notation and removed much of the software
architecture discussion. Chapter 5 is joint work with Juan Pablo Vielma that is not yet submitted.

Hypatia solver is introduced in Section 1.2 and is available at https://github.com/chriscoey/
Hypatia.jl. Pajarito solver is introduced in Section 4.5 and is available at https://github.com/
JuliaOpt/Pajarito.jl. However as we discuss in Section 5.2.1, Pajarito is now obsolete as it is
based on MathProgBase, which is superseded by MathOptInterface (Benoit Legat et al., 2020).
MOIPajarito is the MathOptInterface-based successor to Pajarito. MOIPajarito is introduced in
Section 5.2.1 and is currently available at https://github.com/chriscoey/MOIPajarito.jl, but
this URL and package name may change when the solver is officially released.

0.3 General notation

For a natural number d, we define the index set JdK := {1, 2, . . . , d}. Often we construct vectors with
round parentheses, e.g. (a, b, c), and matrices with square brackets, e.g.

[
a b
c d

]
. For a set C, cl(C) and

int(C) denote the closure and interior of C, respectively.
R denotes the space of reals, and R≥, R>, R≤, R< denote the nonnegative, positive, nonpositive,

and negative reals. Rd is the space of d-dimensional real vectors, and Rd1×d2 is the d1-by-d2-
dimensional real matrices. The vectorization operator vec : Rd1×d2 → Rd1d2 maps matrices to vectors
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by stacking columns, and its inverse operator is matd1,d2 : Rd1d2 → Rd1×d2 .
Sd is the space of symmetric matrices with side dimension d, and Sd⪰ and Sd≻ denote the positive

semidefinite (PSD) and positive definite symmetric matrices. The inequality S ⪰ Z is equivalent to
S − Z ∈ Sd⪰ (and similarly for the strict inequality ≻ and Sd≻). We let sd(d) := d(d+ 1)/2 be the
dimension of the vectorized upper triangle of Sd. We overload the vectorization operator vec : Sd →
Rsd(d) to perform an svec transformation, which rescales off-diagonal elements by

√
2 and stacks

columns of the upper triangle (or equivalently, rows of the lower triangle). For example, for the smat
space point S ∈ S3 we have sd(3) = 6 and vec(S) = (S1,1,

√
2S1,2, S2,2,

√
2S1,3,

√
2S2,3, S3,3) ∈ Rsd(3)

in svec space. The inverse mapping mat : Rsd(d) → Sd is well-defined.
For a vector or matrix A, the transpose is A′ and the trace is tr(A). I(d) is the identity matrix

in Rd×d. Diag : Rd → Sd is the diagonal matrix of a given vector, and diag : Sd → Rd is the vector
of the diagonal of a given matrix. For dimensions implied by context, e is a vector of ones, ei is the
ith unit vector, and 0 may be a vector or matrix of zeros.

We use the standard inner product on Rd, i.e. ⟨s, z⟩ = s′z =
∑

i∈JdKsizi for s, z ∈ Rd This equips
Rd with the standard norm ∥s∥ = (s′s)1/2. The linear operators vec and mat preserve inner products,
e.g. ⟨S,Z⟩ = vec(S)′ vec(Z) = tr(S′Z) for S,Z ∈ Rd1×d2 or S,Z ∈ Sd.
|x| is the absolute value of x ∈ R and log(x) is the natural logarithm of x > 0. For a vector

x ∈ Rd, ∥x∥∞ = maxi∈JdK|xi| is the ℓ∞ norm and ∥x∥1 =
∑

i∈JdK|xi| is the ℓ1 norm. det(X) is the
determinant of X ∈ Sd, and logdet(X) is the log-determinant of X ≻ 0. λi(X) is the ith largest
eigenvalue of X ∈ Sd, and σi(X) is the ith largest singular value for X ∈ Rd1×d2 .

Often we also work with vectors or matrices over the complex numbers C. For x ∈ C, the real
part is ℜ(x) and the imaginary part is ℑ(x). We vectorize complex arrays to real vectors by storing
each complex element as two consecutive real elements (the real part followed by the imaginary
part). Hd is the complex Hermitian matrices and Hd

⪰ are the Hermitian PSD matrices. For Hd,
we use a modified svec transformation to the d2-dimensional real vectors. For example, the smat
space point S ∈ H2 maps to the svec space point vec(S) = (S1,1,

√
2ℜ(S1,2),

√
2ℑ(S1,2), S2,2) ∈ R4.

The complex-to-real vectorization operators preserve inner products and their inverse mappings are
well-defined. A′ denotes the conjugate transpose of a complex matrix A, and most of our other
notation generalizes easily to the complex case.

Given a set C ⊂ Rd, suppose the function f : int(C) → R is strictly convex and three times
continuously differentiable on the interior of C. For a point p ∈ int(C), we denote the gradient
and Hessian of f at p as ∇f(p) ∈ Rd and ∇2f(p) ∈ Sd≻. Given an h ∈ Rd, the first, second,
and third order directional derivatives of f at p in direction h are ∇f(p)[h] ∈ R, ∇2f(p)[h, h] ∈
R≥, and ∇3f(p)[h, h, h] ∈ R. Sometimes we interpret (directional) derivatives as operators, e.g.
∇2f(p)[h, h] = ⟨∇2f(p)[h], h⟩. Often we omit the point at which the derivative is evaluated if this is
clear from context, e.g. ∇2f . We use subscripts for partial derivatives, e.g. ∇wf(u,w).
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Chapter 1

Performance enhancements for a generic
conic interior point algorithm

Abstract

We define an exotic cone as a proper cone for which we can implement a small set of tractable
(i.e. fast, numerically stable, analytic) oracles for a logarithmically homogeneous self-concordant
barrier function for the cone or for its dual cone. Our extensible, open source conic interior point
solver Hypatia allows modeling and solving any conic problem over a Cartesian product of exotic
cones. In this chapter, we introduce Hypatia’s interior point algorithm, which generalizes that of
Skajaa and Ye (2015) by handling exotic cones without tractable primal oracles. To improve
iteration count and solve time in practice, we propose four enhancements to the interior point
stepping procedure of Skajaa and Ye (2015): (1) loosening the central path proximity conditions,
(2) adjusting the directions using a third order directional derivative barrier oracle, (3) performing
a backtracking search on a curve, and (4) combining the prediction and centering directions. We
implement two dozen useful exotic cones in Hypatia. We summarize the complexity of computing
oracles for these cones and show that our new third order oracle is not a bottleneck. From 37
applied examples, we generate a diverse benchmark set of 379 problems. Overall, our stepping
enhancements reduce the geometric means of iteration count and solve time by over 80% and
70% respectively.

1.1 Introduction

Any convex optimization problem may be represented as a conic problem that minimizes a linear
function over the intersection of an affine subspace with a Cartesian product of primitive proper
cones (i.e. irreducible, closed, convex, pointed, and full-dimensional conic sets). Under certain
conditions, a conic problem has a simple and easily checkable certificate of optimality, primal
infeasibility, or dual infeasibility (Permenter, Friberg, and E. D. Andersen, 2017). Most commercial
and open source conic solvers (such as CSDP (Borchers, 1999), CVXOPT (M. Andersen et al., 2011),
ECOS (Domahidi, Chu, and Boyd, 2013; Serrano, 2015), MOSEK (MOSEK ApS, 2020a), SDPA
(Yamashita, Fujisawa, and Kojima, 2003), Alfonso (Papp and Yıldız, 2017)) implement primal-dual
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interior point methods (IPMs) based on the theory of logarithmically homogeneous self-concordant
barrier (LHSCB) functions. Compared to first order conic methods (see O’Donoghue et al. (2016)
on SCS solver), idealized IPMs typically exhibit higher per-iteration cost, but have a lower iteration
complexity of O(

√
ν log(1/ε)) iterations to converge to ε tolerance, where ν is the barrier parameter

of the LHSCB. We limit the scope of this chapter to conic IPMs, but note that there are other
notions of duality and IPMs for convex problems outside of the conic realm (see e.g. Karimi and
Tunçel (2020b)).

1.1.1 The Skajaa-Ye algorithm

Most conic IPM solvers use efficient algorithms specialized for symmetric cones, in particular, the
nonnegative, (rotated) second order, and positive semidefinite (PSD) cones. However, many useful
nonsymmetric conic constraints (such as u ≤ log(w), representable with an exponential cone) are
not exactly representable with symmetric cones. Although nonsymmetric conic IPMs proposed
by Nesterov, Todd, and Ye (1996) and Nesterov (2012) can handle a broader class of cones, they
have several disadvantages compared to specialized symmetric methods (e.g. requiring larger linear
systems, strict feasibility of the initial iterate, or conjugate LHSCB oracles).

The algorithm by Skajaa and Ye (2015), henceforth referred to as SY, addresses these issues
by approximately tracing the central path of the homogeneous self-dual embedding (HSDE) (E. D.
Andersen, Roos, and Terlaky, 2003; Xu, Hung, and Ye, 1996) to an approximate solution for the
HSDE. This final iterate provides an approximate conic certificate for the conic problem, if a conic
certificate exists. The SY algorithm relies on an idea by Nesterov (2012) that a high quality prediction
direction (enabling a long step and rapid progress towards a solution) can be computed if the current
iterate is in close proximity to the central path (i.e. it is an approximate scaling point). To restore
centrality after each prediction step, SY performs a series of centering steps.

By using a different definition of central path proximity to Nesterov (2012), SY avoids needing
conjugate LHSCB oracles. Some proposed techniques such as the Hessian scaling updates and central
path proximity definitions of Myklebust and Tunçel (2014) and Dahl and E. D. Andersen (2021)
require conjugate LHSCB oracles. Indeed, a major advantage of SY is that it only requires access to
a few tractable oracles for the primal cone: an initial interior point, feasibility check, and gradient
and Hessian evaluations for the LHSCB. In our experience, for a large class of proper cones, these
oracles can be evaluated analytically, i.e. without requiring the implementation of iterative numerical
procedures (such as optimization) that can be expensive and may need numerical tuning. Conjugate
LHSCB oracles in general require optimization, and compared to the analytic oracles, they are often
significantly less efficient and more prone to numerical instability.

1.1.2 Practical algorithmic developments

We describe an IPM that generalizes and enhances the performance of SY. We implement this
algorithm in our new IPM solver, Hypatia. A key feature of Hypatia is a generic cone interface that
allows users to define new exotic cones. We define an exotic cone as a proper cone K for which we
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can implement tractable (i.e. fast, numerically stable, analytic) oracles (those required by SY) for
either K or K∗ (not both). We have already predefined two dozen useful exotic cone types (some
with multiple variants) in Hypatia.

Defining a new cone through Hypatia’s cone interface makes both the cone and its dual available
for use in conic formulations. For many proper cones of interest, including most of Hypatia’s
nonsymmetric cones, we are not aware of tractable LHSCB oracles for both K and K∗. Suppose a
conic problem involves a Cartesian product of exotic cones, some with primal oracles implemented
and some with dual oracles implemented (as in several example formulations described in Section 2.3).
In this case, SY can solve neither the primal conic problem nor its conic dual, as SY requires primal
oracles for all cones. Our algorithm generalizes SY to allow a conic formulation over any Cartesian
product of exotic cones.

The focus of Skajaa and Ye (2015) is demonstrating that SY has the best known iteration
complexity for conic IPMs. This complexity analysis was corrected by Papp and Yıldız (2017), who
implemented SY in their recent MATLAB solver Alfonso (Papp and Yıldız, 2020; Papp and Yıldız,
2021). It is well known that performant IPM implementations tend to violate assumptions used in
iteration complexity analysis, so in this chapter we are not concerned with iteration complexity. Our
goal is to reduce iteration counts and solve times in practice, by enhancing the performance of the
interior point stepping procedure proposed by SY and implemented by Alfonso.

The basic SY-like stepping procedure computes a prediction or centering direction by solving a
structured linear system, performs a backtracking line search in the direction, and steps as far as
possible given a restrictive central path proximity condition. We propose a sequence of four practical
performance enhancements.

Less restrictive proximity. We use a relaxed central path proximity condition, allowing longer
prediction steps and fewer centering steps.

Third order adjustments. After computing the prediction or centering direction, we compute a
third order adjustment (TOA) direction using a new third order oracle (TOO) for exotic cones.
We use a line search in the unadjusted direction to determine how to combine it with the TOA
direction, before performing a second line search and stepping in the new adjusted direction.

Curve search. Due to the central path proximity checks, each backtracking line search can be
quite expensive. Instead of performing two line searches, we use a single backtracking search
along a particular quadratic curve of combinations of the unadjusted and TOA directions.

Combined directions. Unlike SY, most conic IPMs do not use separate prediction and centering
phases. We compute the prediction and centering directions and their associated TOA
directions, then perform a backtracking search along a quadratic curve of combinations of all
four directions.

Our TOA approach is distinct from the techniques by Mehrotra (1992) and Dahl and E. D.
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Andersen (2021) that also use higher order LHSCB information.1 Unlike these techniques, we derive
adjustments (using the TOO) for both the prediction and centering directions. Our TOO has a
simpler and more symmetric structure than the third order term used by Dahl and E. D. Andersen
(2021), and we leverage this for fast and numerically stable evaluations. Whereas the method by
Mehrotra (1992) only applies to symmetric cones, and Dahl and E. D. Andersen (2021) test their
technique only for the standard exponential cone, we implement and test our TOO for all of Hypatia’s
two dozen predefined cones. In our experience, requiring a tractable TOO is only as restrictive as
requiring tractable gradient and Hessian oracles. We show that the time complexity of the TOO is
no higher than that of the other required oracles for each of our cones.

Although this chapter is mainly concerned with the stepping procedures, we also outline our
implementations of other key algorithmic components. These include preprocessing of problem data,
finding an initial iterate, the solution of structured linear systems for search directions, and efficient
backtracking searches with central path proximity checks. We note that Hypatia has a variety of
algorithmic options for these components; these different options can have a dramatic impact on
overall solve time and memory usage, but in most cases they have minimal effect on the iteration
count. For the purposes of this chapter, we only describe and test one set of (default) options for
these components.

1.1.3 Benchmark instances and computational testing

We implement and briefly describe 37 applied examples (available in Hypatia’s examples folder),
each of which has options for creating formulations of different types and sizes. From these examples,
we generate 379 problem instances (primal-dual feasible, primal infeasible, or dual infeasible) of a
wide range of sizes. Since there is currently no conic benchmark storage format that recognizes more
than a handful of cone types, we generate all instances on the fly using JuMP or Hypatia’s native
interface. All of Hypatia’s predefined cones are represented in these instances, so we believe this is
the most diverse conic benchmark set available.

On this benchmark set, we run five different stepping procedures: the basic SY-like procedure
(similar to Alfonso) and the sequence of four cumulative enhancements to this procedure. Our
results show that each enhancement tends to improve Hypatia’s iteration count and solve time, with
minimal impact on the number of instances solved. We do not enforce time or iteration limits, but
we note that under strict limits the enhancements would greatly improve the number of instances
solved. The TOA enhancement alone leads to a particularly consistent improvement of around 45%
for iteration counts. Overall, the enhancements together reduce the iterations and solve time by
more than 80% and 70% respectively. For instances that take more iterations or solve time, the
enhancements tend to yield greater relative improvements in these measures.

1To avoid confusion, we do not use the term ‘corrector’ in this chapter. In the terminology of Mehrotra (1992)
and Dahl and E. D. Andersen (2021) our TOA approach is a type of ‘higher order corrector’ technique, but also our
unadjusted centering direction is referred to by Skajaa and Ye (2015) and Papp and Yıldız (2017) as the ‘corrector’
direction.
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1.1.4 Overview

In Section 1.2, we introduce Hypatia solver. In Section 1.3, we define exotic cones, LHSCBs, and our
required cone oracles (including the TOO). In Section 1.4, we describe Hypatia’s general primal-dual
conic form, associated conic certificates, and the HSDE. In Section 1.5, we define the central path of
the HSDE and central path proximity measures, and we outline Hypatia’s high level algorithm. We
also derive the prediction and centering directions and our new TOA directions, and we describe the
SY-like stepping procedure and our series of four enhancements to this procedure. In Sections 1.6
and 1.7, we discuss advanced procedures for preprocessing and initial point finding, solving structured
linear systems for directions, and performing efficient backtracking searches and proximity checks.
In Section 1.8, we briefly introduce Hypatia’s predefined exotic cones and show that our TOO is
relatively cheap to compute. In Section 1.9, we summarize our applied examples and exotic conic
benchmark instances, and finally we present our computational results demonstrating the practical
efficacy of our stepping enhancements.

1.2 Hypatia solver

We introduce our new conic IPM solver, Hypatia, available under the open source MIT license at
https://github.com/chriscoey/Hypatia.jl Hypatia is written in the Julia language (Bezanson
et al., 2017) and is accessible through either a flexible, low-level native interface or the open source
modeling tools JuMP (Dunning, Huchette, and Lubin, 2017) and Convex.jl (Udell et al., 2014). In
Coey, Kapelevich, and Vielma (2021c), we provide basic documentation, examples, and instructions
for using Hypatia.

A key feature of Hypatia is the generic cone interface, which allows defining new exotic cones.
The interface requires only the implementation of the few cone oracles needed by SY, and allows
optional specification of additional cone oracles that can improve performance. Unlike SY (and its
implementation in Alfonso solver (Papp and Yıldız, 2020; Papp and Yıldız, 2021)), defining a new
cone in Hypatia makes both the cone and its dual cone simultaneously available for use in conic
formulations. For many cones of interest, easily computable oracles are only known for either the
primal cone or the dual cone but not both. This means Hypatia is able to handle a broader class of
conic formulations than SY/Alfonso, which require oracles specifically for all cones in the primal
conic formulation. For example, in our portfolio rebalancing example in Section 2.3.1, we have both
ℓ1 norm cone and ℓ∞ norm cone constraints; we are aware of an LHSCB with simple closed form
oracles for the ℓ∞ norm cone, but not for its dual cone - the ℓ1 norm cone (see Section 2.2.2.1).

We have already implemented two dozen predefined exotic cone types in Hypatia (not counting
their dual cones). Many of these cones have multiple variants, for example both real and complex
flavors. We describe these cones, their dual cones, and associated LHSCBs in Coey, Kapelevich, and
Vielma (2021b) and Coey, Kapelevich, and Vielma (2021c). Several cones are new and required the
development of LHSCBs and efficient procedures for oracle evaluations (see Chapters 2 and 3). We
note that for many of these cones, computing conjugate barrier oracles requires optimization, which
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can be slow and numerically fraught. Fortunately, like SY, Hypatia does not need conjugate barrier
oracles.

Hypatia uses a primal-dual conic form that (unlike SY/Alfonso) does not force the user to
introduce slack variables, and allows linear operators to be represented with Julia’s sparse, dense, or
structured abstract matrix types. This conic form matches CVXOPT’s cone LP form (M. Andersen
et al., 2011), and we describe the associated conic certificates in Section 1.4. Hypatia allows
representing and solving conic problems in any real floating point type in Julia. For example, since
Julia wraps the GNU MPFR Library, using Julia’s BigFloat type allows solving conic problems to
arbitrary precision (though this tends to be less efficient than using the default Float64 type).

Hypatia’s solver interface is highly extensible. We provide several optional interior point search
and stepping procedures, including those we develop in Section 1.5. Since the per-iteration bottleneck
of IPMs such as Hypatia’s algorithm tends to be solving the large structured linear system for search
directions, Hypatia allows the user to choose from several predefined methods (including options for
sparse or dense factorization-based solves or linear-operator-based iterative/indirect solves) or to
implement their own formulation-specific procedure to leverage problem structure.

In Hypatia’s examples folder, we have included over three dozen applied example problems
modeled using JuMP or Hypatia’s native interface. Most examples have multiple formulation type
and size options. We make use of various modeling utilities Hypatia provides for manipulating
real and complex arrays and for generating well-conditioned polynomial interpolations (useful in
polynomial sum of squares formulations). We briefly summarize the examples in Section 1.9.1.

1.3 Exotic cones and oracles

Let K be a proper cone in Rq, i.e. a conic subset of Rq that is closed, convex, pointed, and full-
dimensional (see Skajaa and Ye (2015)). Note that requiring K to be a subset of Rq simplifies our
notation but is not restrictive, e.g. for the PSD cone, we use the standard svec vectorization (see
Section 0.3). The dual cone of K is K∗, which is also a proper cone in Rq:

K∗ := {z ∈ Rq : s′z ≥ 0, ∀s ∈ K}. (1.1)

Following Nesterov and Nemirovski (1994, Sections 2.3.1 and 2.3.3), f : int(K)→ R is a ν-LHSCB
for K, where ν ≥ 1 is the LHSCB parameter, if it is three times continuously differentiable, strictly
convex, satisfies f(si)→∞ along every sequence si ∈ int(K) converging to the boundary of K, and:∣∣∇3f(s)[h, h, h]

∣∣ ≤ 2
(
∇2f(s)[h, h]

)3/2 ∀s ∈ int(K), h ∈ Rq, (1.2a)

f(θs) = f(s)− ν log(θ) ∀s ∈ int(K), θ ∈ R>. (1.2b)

Following Renegar (2001, Section 3.3), we define the conjugate of f , f∗ : int(K∗)→ R, as:

f∗(z) := −infs∈int(K){s′z + f(s)}, (1.3)
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which is a ν-LHSCB for K∗.
A Cartesian product K = K1 × · · · × KK of K proper cones is a proper cone, and its dual cone

is K∗ = K∗
1 × · · · × K∗

K . In this case, if fk is a νk-LHSCB for Kk, then
∑

k∈JKKfk is an LHSCB
for K with parameter

∑
k∈JKKνk (Nesterov and Nemirovski, 1994, Proposition 2.3.3). We call K a

primitive cone if it cannot be written as a Cartesian product of two or more lower-dimensional cones
(i.e. K must equal one). Note K∗ is primitive if and only if K is primitive. Primitive proper cones
are the fundamental building blocks of conic formulations.

We call a proper cone K an exotic cone if we can implement a particular set of tractable oracles
for either K or K∗. Suppose we have tractable oracles for K ⊂ Rq and let f : int(K)→ R denote the
ν-LHSCB for K. The oracles for K that we require in this chapter are as follows.

Feasibility check. The strict feasibility oracle checks whether a given point s ∈ Rq satisfies
s ∈ int(K).

Gradient and Hessian evaluations. Given a point s ∈ int(K), the gradient oracle g and Hessian
oracle H evaluated at s are:

g(s) := ∇f(s) ∈ Rq, (1.4a)

H(s) := ∇2f(s) ∈ Sq≻. (1.4b)

Third order directional derivative. Given a point s ∈ int(K) and a direction δs ∈ Rq, our new
third order oracle (TOO), denoted T, is a rescaled third order directional derivative vector:

T(s, δs) := −1
2∇

3f(s)[δs, δs] ∈ Rq. (1.5)

Initial interior point. The initial interior point t ∈ int(K) is an arbitrary point in the interior of
K (which is nonempty since K is proper).

In Section 1.8, we introduce Hypatia’s predefined cones and discuss the time complexity of
computing the feasibility check, gradient, Hessian, and TOO oracles. In Section 2.5, we describe
efficient and numerically stable techniques for computing these oracles for a handful of our cones.
Although Hypatia’s generic cone interface allows specifying additional oracles that can improve
speed and numerical performance (e.g. a dual cone feasibility check, Hessian product, and inverse
Hessian product), these optional oracles are outside the scope of this chapter.

For the initial interior point (which Hypatia only calls once, when finding an initial iterate), we
prefer to use the central point of K. This is the unique point satisfying t ∈ int(K) ∩ int(K∗) and
t = −g(t) (Dahl and E. D. Andersen, 2021). It can also be characterized as the solution to the
following strictly convex problem:

argmins∈int(K)

(
f(s) + 1

2∥s∥
2
)
. (1.6)

For the nonnegative cone K = R≥, f(s) = − log(s) is an LHSCB with ν = 1, and we have g(s) = −s−1
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and the central point t = 1 = −g(1). For some of Hypatia’s cones, we are not aware of a simple
analytic expression for the central point, in which case we typically use a non-central interior point.

1.4 Conic form and certificates

In Sections 1.4.1 and 1.4.2, we describe our general conic primal-dual form and the associated conic
certificates. In Section 1.4.3, we introduce the homogeneous self-dual embedding (HSDE) conic
feasibility problem, a solution of which may provide a conic certificate.

1.4.1 General conic form

Hypatia uses the following primal conic form over variable x ∈ Rn:

infx c′x : (1.7a)

b−Ax = 0, (1.7b)

h−Gx ∈ K, (1.7c)

where c ∈ Rn, b ∈ Rp, and h ∈ Rq are vectors, A : Rn → Rp and G : Rn → Rq are linear maps, and
K ⊂ Rq is a Cartesian product K = K1×· · ·×KK of exotic cones. For k ∈ JKK, we let qk = dim(Kk),
so
∑

k∈JKKqk = q = dim(K). Henceforth we use n, p, q to denote respectively the variable, equality,
and conic constraint dimensions of a conic problem.

Once a proper cone Kk is defined through Hypatia’s generic cone interface, both Kk and K∗
k

may be used in any combination with other cones recognized by Hypatia to construct the Cartesian
product cone K in (1.7c). The primal form (1.7) matches CVXOPT’s form, however CVXOPT only
recognizes symmetric cones (Vandenberghe, 2010). Unlike the conic form used by Skajaa and Ye
(2015) and Papp and Yıldız (2021), which recognizes conic constraints of the form x ∈ K, our form
does not require introducing slack variables to represent a more general constraint h−Gx ∈ K.

The conic dual problem of (1.7), over variables y ∈ Rp and z ∈ Rq associated with (1.7b)
and (1.7c), is:

supy,z − b′y − h′z : (1.8a)

c+A′y +G′z = 0, (1.8b)

z ∈ K∗, (1.8c)

where (1.8b) is associated with the primal variable x ∈ Rn.

1.4.2 Conic certificates

Under certain conditions, there exists a simple conic certificate providing an easily verifiable proof of
infeasibility of the primal (1.7) or dual (1.8) problem (via the conic generalization of Farkas’ lemma)
or optimality of a given primal-dual solution.
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A primal improving ray x is a feasible direction for the primal along which the objective improves:

c′x < 0, (1.9a)

−Ax = 0, (1.9b)

−Gx ∈ K, (1.9c)

and hence it certifies dual infeasibility.

A dual improving ray (y, z) is a feasible direction for the dual along which the objective improves:

−b′y − h′z > 0, (1.10a)

A′y +G′z = 0, (1.10b)

z ∈ K∗, (1.10c)

and hence it certifies primal infeasibility.

A complementary solution (x, y, z) satisfies the primal-dual feasibility conditions (1.7b), (1.7c),
(1.8b) and (1.8c), and has equal and attained primal and dual objective values:

c′x = −b′y − h′z, (1.11)

and hence certifies optimality of (x, y, z) via conic weak duality.

One of these certificates exists if neither the primal nor the dual is ill-posed. Intuitively, according to
MOSEK ApS (2020a, Section 7.2), a conic problem is ill-posed if a small perturbation of the problem
data can change the feasibility status of the problem or cause arbitrarily large perturbations to the
optimal solution (see Permenter, Friberg, and E. D. Andersen (2017) for more details).

1.4.3 Homogeneous self-dual embedding

The HSDE is a self-dual conic feasibility problem in variables x ∈ Rn, y ∈ Rp, z ∈ Rq, τ ∈ R, s ∈
Rq, κ ∈ R (see Vandenberghe (2010, Section 6)), derived from a homogenization of the primal-dual
optimality conditions (1.7b), (1.7c), (1.8b), (1.8c) and (1.11):

0

0

s

κ

 =


0 A′ G′ c

−A 0 0 b

−G 0 0 h

−c′ −b′ −h′ 0



x

y

z

τ

 , (1.12a)

(z, τ, s, κ) ∈
(
K∗ × R≥ ×K × R≥

)
. (1.12b)
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For convenience we let ω := (x, y, z, τ, s, κ) ∈ Rn+p+2q+2 represent a point. We define the structured
4× 6 block matrix E ∈ R(n+p+q+1)×dim(ω) such that (1.12a) is equivalent to:

Eω = 0. (1.13)

Here we assume E has full row rank; in Section 1.6 we discuss preprocessing techniques that handle
linearly dependent rows. Note that ω = 0 satisfies (1.12), so the HSDE is always feasible. A
point ω is an interior point if it is strictly feasible for the conic constraints (1.12b), i.e. ω satisfies
(z, τ, s, κ) ∈ int

(
K∗ × R≥ ×K × R≥

)
.

Suppose a point ω is feasible for the HSDE (1.12). From skew symmetry of the square 4 × 4

block matrix in (1.12a), we have s′z + κτ = 0. From the conic constraints (1.12b) and the dual cone
inequality (1.1) we have s′z ≥ 0 and κτ ≥ 0. Hence s′z = κτ = 0. We consider an exhaustive list of
cases below.

Optimality. If τ > 0, κ = 0, then (x, y, z)/τ is a complementary solution satisfying the primal-dual
optimality conditions (1.7b), (1.7c), (1.8b), (1.8c) and (1.11).

Infeasibility. If τ = 0, κ > 0, then c′x+ b′y + h′z < 0 and we consider two sub-cases.

Of primal. If b′y + h′z < 0, then (y, z) is a primal infeasibility certificate satisfying (1.10).

Of dual. If c′x < 0, then x is a dual infeasibility certificate satisfying (1.9).

No information. If τ = κ = 0, then ω provides no information about the feasibility or optimal
values of the primal or dual.

Thus an HSDE solution ω satisfying κ+ τ > 0 provides an optimality or infeasibility certificate (see
Skajaa and Ye (2015, Lemma 1) and Vandenberghe (2010, Section 6.1)).

According to Skajaa and Ye (2015, Section 2), if the primal and dual problems are both feasible
and have zero duality gap, SY (their algorithm) finds an HSDE solution with τ > 0 (yielding a
complementary solution), and if the primal or dual (possibly both) is infeasible, SY finds an HSDE
solution with κ > 0 (yielding an infeasibility certificate). This implies that if SY finds a solution
with κ = τ = 0, then κ = τ = 0 for all solutions to the HSDE; in this case, no complementary
solution or improving ray exists, and the primal or dual (possibly both) is ill-posed (Permenter,
Friberg, and E. D. Andersen, 2017). The algorithm we describe in Section 1.5 is an extension of SY
that inherits these properties.

1.5 Central path following algorithm

In Section 1.5.1, we describe the central path of the HSDE, and in Section 1.5.2 we define central
path proximity measures. In Section 1.5.3, we outline a high level IPM that maintains iterates close
to the central path, and we give numerical convergence criteria for detecting approximate conic
certificates. In Section 1.5.4, we derive prediction and centering directions and our corresponding
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TOA directions using the TOO. Finally in Section 1.5.5, we summarize an SY-like stepping procedure
and describe our sequence of four enhancements to this procedure.

1.5.1 Central path of the homogeneous self-dual embedding

We define the HSDE in (1.12). Recall that K in our primal conic form (1.7) is a Cartesian product
K = K1 × · · · × KK of K exotic cones. We partition the exotic cone indices JKK into two sets: Kpr

for cones with primal oracles (i.e. for Kk) and Kdu for cones with dual oracles (i.e. for K∗
k). For

convenience, we append the τ and κ variables onto the s and z variables. Letting K̄ = K + 1, we
define for k ∈ JK̄K:

K̄k :=


Kk k ∈ Kpr,

K∗
k k ∈ Kdu,

R≥ k = K̄,

(1.14a)

(z̄k, s̄k) :=


(zk, sk) k ∈ Kpr,

(sk, zk) k ∈ Kdu,

(κ, τ) k = K̄.

(1.14b)

For a given initial interior point ω0 = (x0, y0, z0, τ0, s0, κ0), the central path of the HSDE is the
trajectory of solutions ωµ = (xµ, yµ, zµ, τµ, sµ, κµ), parameterized by µ > 0, satisfying:

Eωµ = µEω0, (1.15a)

z̄µ,k + µgk(s̄µ,k) = 0 ∀k ∈ JK̄K, (1.15b)

(z̄µ, s̄µ) ∈ int(K̄∗ × K̄). (1.15c)

When all exotic cones have primal oracles (i.e. Kdu is empty), our definition (1.15) exactly matches
the central path defined in Vandenberghe (2010, Equation 32), and only differs from the definition in
Skajaa and Ye (2015, Equations 7-8) in the affine form (i.e. the variable names and affine constraint
structure). Unlike SY, our central path condition (1.15b) allows cones with dual oracles (Kdu may
be nonempty).

To obtain an initial point ω0, we first let:(
z̄0k, s̄

0
k

)
= (−gk(tk), tk) ∀k ∈ JK̄K, (1.16)

where tk ∈ int
(
K̄k
)

is the initial interior point oracle (note that τ0 = κ0 = 1). Although x0 and y0

can be chosen arbitrarily, we let x0 be the solution of:

minx∈Rn ∥x∥ : (1.17a)

−Ax+ bτ0 = 0, (1.17b)

−Gx+ hτ0 − s0 = 0, (1.17c)
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and we let y0 be the solution of:

miny∈Rp ∥y∥ : (1.18a)

A′y +G′z0 + cτ0 = 0. (1.18b)

In Section 1.6, we outline a QR-factorization-based procedure for preprocessing the affine data of
the conic model and solving for ω0.

Like Skajaa and Ye (2015, Section 4.1), we define the complementarity gap function:

µ(ω) := s̄′z̄/
∑

k∈JK̄Kνk, (1.19)

where νk is the LHSCB parameter of the LHSCB fk for K̄k (see (1.2b)). Note that µ(ω) > 0

if (z̄, s̄) ∈ int(K̄∗) × int(K̄), by a strict version of the dual cone inequality (1.1). From (1.16),
µ(ω0) = 1, since in (1.19) we have (s̄0)′z̄0 =

∑
k∈JK̄Kt

′
k(−gk(tk)), and t′k(−gk(tk)) = νk by logarithmic

homogeneity of fk (Nesterov and Nemirovski, 1994, Proposition 2.3.4). Hence ω0 satisfies the central
path conditions (1.15) for parameter value µ = 1. The central path is therefore a trajectory that
starts at ω0 with complementarity gap µ = 1 and approaches a solution for the HSDE as µ decreases
to zero.

1.5.2 Central path proximity

Given a point ω, we define the central path proximity πk for exotic cone k ∈ JK̄K as:

πk(ω) :=


∥∥(Hk(s̄k))

−1/2(z̄k/µ(ω) + gk(s̄k))
∥∥ if µ(ω) > 0, s̄k ∈ int

(
K̄k
)
,

∞ otherwise.
(1.20)

Hence πk is a measure of the distance from s̄k and z̄k to the surface defined by the central path
condition (1.15b) (compare to Skajaa and Ye (2015, Equation 9) and Nesterov and Todd (1998,
Section 4)).

In Lemma 1.5.1, we show that for exotic cone k ∈ JK̄K, if πk(ω) < 1, then s̄k ∈ int
(
K̄k
)

and
z̄k ∈ int

(
K̄∗
k

)
. This condition is sufficient but not necessary for strict cone feasibility. If it holds for

all k ∈ JK̄K, then ω is an interior point (by definition) and (1.15c) is satisfied. From (1.20), πk(ω)
can be computed by evaluating the feasibility check, gradient, and Hessian oracles for K̄k at s̄k.

Lemma 1.5.1. Given ω, for each k ∈ JK̄K, πk(ω) < 1 implies s̄k ∈ int
(
K̄k
)

and z̄k ∈ int
(
K̄∗
k

)
.

Proof. We adapt Papp and Yıldız (2017, Lemma 15). Fix µ = µ(ω) for convenience, and suppose
πk(ω) < 1 for exotic cone k ∈ JK̄K. Then by (1.20), µ > 0 and s̄k ∈ int

(
K̄k
)
. By Papp and Yıldız

(2017, Theorem 8), s̄k ∈ int
(
K̄k
)

implies −gk(s̄k) ∈ int
(
K̄∗
k

)
. Let fk be the LHSCB for K̄k, and let

H∗
k := ∇2f∗k denote the Hessian operator for the conjugate f∗k (see (1.3)) of fk. By Papp and Yıldız

(2017, Equation 13), H∗
k(−gk(s̄k)) = (Hk(s̄k))

−1, so:∥∥(H∗
k(−gk(s̄k)))1/2(z̄k/µ+ gk(s̄k))

∥∥ (1.21a)
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=
∥∥(Hk(s̄k))

−1/2(z̄k/µ+ gk(s̄k))
∥∥ (1.21b)

= πk(ω) < 1. (1.21c)

So by Papp and Yıldız (2017, Definition 1), z̄k/µ ∈ int
(
K̄∗
k

)
, hence z̄k ∈ int

(
K̄∗
k

)
.

We now define a proximity function that aggregates the exotic cone central path proximity values
πk(ω) ≥ 0,∀k ∈ JK̄K. SY aggregates by taking the ℓ2 norm:

πℓ2(ω) :=
∥∥(πk(ω))k∈JK̄K

∥∥. (1.22)

An alternative aggregated proximity uses the ℓ∞ norm (maximum):

πℓ∞(ω) :=
∥∥(πk(ω))k∈JK̄K

∥∥
∞. (1.23)

Clearly, 0 ≤ πk(ω) ≤ πℓ∞(ω) ≤ πℓ2(ω), ∀k ∈ JK̄K. Both conditions πℓ2(ω) < 1 and πℓ∞(ω) < 1

guarantee by Lemma 1.5.1 that ω is an interior point, however using πℓ2 leads to a more restrictive
condition on ω.

1.5.3 High level algorithm

We describe a high level algorithm for approximately solving the HSDE. The method starts at
the initial interior point ω0 with complementarity gap µ(ω0) = 1 and approximately tracks the
central path trajectory (1.15) through a series of iterations. It maintains feasibility for the linear
equality conditions (1.15a) and strict cone feasibility conditions (1.15c), but allows violation of
the nonlinear equality conditions (1.15b). On the ith iteration, the current interior point is ωi−1

satisfying πk(ωi−1) < 1,∀k ∈ JK̄K, and the complementarity gap is µ(ωi−1). The method searches
for a new point ωi that maintains the proximity condition πk(ω

i) < 1, ∀k ∈ JK̄K (and hence is an
interior point) and either has a smaller complementarity gap µ(ωi) < µ(ωi−1) or a smaller aggregate
proximity value π(ωi) < π(ωi−1) (where π is πℓ2 or πℓ∞), or both. As the complementarity gap
decreases towards zero, the RHS of (1.15a) approaches the origin, so the iterates approach a solution
of the HSDE (1.12).

To detect an approximate conic certificate and terminate the iterations, we check whether the
current iterate ω satisfies any of the following numerical convergence criteria. These conditions
use positive tolerance values for feasibility εf , infeasibility εi, absolute gap εa, relative gap εr, and
ill-posedness εp. The criteria and default tolerance values are similar to those described by MOSEK
in MOSEK ApS (2022, Section 13.3.2) and CVXOPT in M.S. Andersen, J. Dahl, L. Vandenberghe
(2021), and implemented in Alfonso (Papp and Yıldız, 2020). In Section 1.9.2, we describe the
tolerance values we use for computational testing in this chapter.

Optimality. We terminate with a complementary solution (x, y, z)/τ approximately satisfying the
primal-dual optimality conditions (1.7b), (1.7c), (1.8b), (1.8c) and (1.11) if:

max

(
∥A′y +G′z + cτ∥∞

1 + ∥c∥∞
,
∥−Ax+ bτ∥∞

1 + ∥b∥∞
,
∥−Gx+ hτ − s∥∞

1 + ∥h∥∞

)
≤ εfτ, (1.24a)
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and at least one of the following two conditions holds:

s′z ≤ εa, (1.24b)

min(s′z/τ, |c′x+ b′y + h′z|) ≤ εrmax(τ,min(|c′x|, |b′y + h′z|)). (1.24c)

Note that (1.24b) and (1.24c) are absolute and relative optimality gap conditions respectively.

Primal infeasibility. We terminate with a dual improving ray (y, z) approximately satisfying
(1.10) if:

b′y + h′z < 0, ∥A′y +G′z∥∞ ≤ −εi(b′y + h′z). (1.25)

Dual infeasibility. We terminate with a primal improving ray x approximately satisfying (1.9) if:

c′x < 0, max(∥Ax∥∞, ∥Gx+ s∥∞) ≤ −εic′x. (1.26)

Ill-posed primal or dual. If τ and κ are approximately 0, the primal and dual problem statuses
cannot be determined (see Section 1.4.3). We terminate with an ill-posed status if:

µ(ω) ≤ εp, τ ≤ εpmin(1, κ). (1.27)

The high level path following algorithm below computes an approximate solution to the HSDE.
In Section 1.5.5, we describe specific stepping procedures for Line 5.

1 Procedure SolveHSDE():
2 compute initial interior point ω0

3 i← 1

4 while ωi−1 does not satisfy any of the convergence conditions (1.24) to (1.27) do
5 ωi ← Step(ωi−1)

6 i← i+ 1

7 return ωi

1.5.4 Search directions

At a given iteration of the path following method, let ω be the current interior point and fix µ = µ(ω)

for convenience. The stepping procedures we describe in Section 1.5.5 first compute one or more
search directions, which depend on ω. We derive the centering direction in Section 1.5.4.1 and the
prediction direction in Section 1.5.4.2. The goal of centering is to step to a point with a smaller
aggregate central path proximity than the current point, i.e. to step towards the central path. The
goal of prediction is to step to a point with a smaller complementarity gap, i.e. to step closer to a
solution of the HSDE. The centering and prediction directions match those used by SY. We associate
with each of these directions a new third order adjustment (TOA) direction, which depends on the
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TOO and helps to correct the corresponding unadjusted direction (which must be computed before
the TOA direction). Hence we derive four types of directions here.

Each direction is computed as the solution to a linear system with a structured square block
matrix left hand side (LHS) and a particular right hand side (RHS) vector. The LHS, which depends
only on ω and the problem data, is the same for all four directions at a given iteration. We let
r := (rE , r1, . . . , rK̄) ∈ Rdim(ω) represent an RHS, where rE ∈ Rn+p+q+1 corresponds to the linear
equalities (1.15a) and rk ∈ Rqk ,∀k ∈ JK̄K corresponds to the nonlinear equalities (1.15b). The
direction δ := (δx, δy, δz, δτ , δs, δκ) ∈ Rdim(ω) corresponding to r is the solution to:

Eδ = rE , (1.28a)

δz̄,k + µHk(s̄k)δs̄,k = rk ∀k ∈ JK̄K. (1.28b)

Since E is assumed to have full row rank and each Hk is positive definite, this square system is
nonsingular and hence has a unique solution. In Section 1.6, we describe a particular method for
solving (1.28).

1.5.4.1 Centering

The centering direction δc is analogous to the definition of Skajaa and Ye (2015, Section 3.2). It
reduces the violation on the central path nonlinear equality condition (1.15b) (and can be interpreted
as a Newton step), while keeping the complementarity gap µ (approximately) constant. We denote
the centering TOA direction δct. To maintain feasibility for the linear equality condition (1.15a), we
ensure Eδc = Eδct = 0 in (1.28a).

Dropping the index k ∈ JK̄K for conciseness, recall that (1.15b) expresses z̄ + µg(s̄) = 0. A first
order approximation of this condition gives:

z̄ + δz̄ + µ(g(s̄) +H(s̄)δs̄) = 0 (1.29a)

⇒ δz̄ + µH(s̄)δs̄ = −z̄ − µg(s̄), (1.29b)

which matches the form of (1.28b). Hence we let the centering direction δc be the solution to:

Eδ = 0, (1.30a)

δz̄,k + µHk(s̄k)δs̄,k = −z̄k − µgk(s̄k) ∀k ∈ JK̄K. (1.30b)

Similarly, a second order approximation of z̄ + µg(s̄) = 0 gives:

z̄ + δz̄ + µ
(
g(s̄) +H(s̄)δs̄ +

1
2∇

3f(s̄)[δs̄, δs̄]
)
= 0 (1.31a)

⇒ δz̄ + µH(s̄)δs̄ = −z̄ − µg(s̄) + µT(s̄, δs̄), (1.31b)

where (1.31b) uses the definition of the TOO in (1.5). Note that the RHSs of (1.29b) and (1.31b)
differ only by µT(s̄, δs̄), which depends on δs̄. To remove this dependency, we substitute the centering
direction δc, which we assume is already computed, into the RHS of (1.31b). Hence we let the
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centering TOA direction δct, which adjusts the centering direction, be the solution to:

Eδ = 0, (1.32a)

δz̄,k + µHk(s̄k)δs̄,k = µTk
(
s̄k, δ

c
s̄,k

)
∀k ∈ JK̄K. (1.32b)

We note that for a rescaling factor α ∈ (0, 1), the TOA direction corresponding to αδc (a rescaling
of the centering direction) is α2δct (a rescaling of the centering TOA direction).

1.5.4.2 Prediction

The prediction direction δp reduces the complementarity gap and is analogous to the definition
of Skajaa and Ye (2015, Section 3.1). We derive δp and its corresponding TOA direction δpt by
considering the central path conditions (1.15) as a dynamical system parametrized by µ > 0, and
differentiating the linear and nonlinear equalities (1.15a) and (1.15b).

Differentiating (1.15a) once gives:
Eω̇µ = Eω0. (1.33)

Rescaling (1.33) by −µ and substituting (1.15a) gives:

E(−µω̇µ) = −µEω0 = −Eωµ. (1.34)

Dropping the index k ∈ JK̄K for conciseness, we differentiate z̄µ + µg(s̄µ) = 0 from (1.15b) once to
get:

˙̄zµ + g(s̄µ) + µH(s̄µ) ˙̄sµ = 0. (1.35)

Rescaling (1.35) by −µ and substituting z̄µ = −µg(s̄µ) from (1.15b) gives:

−µ ˙̄zµ + µH(s̄µ)(−µ ˙̄sµ) = −z̄µ. (1.36)

The direction ω̇µ is tangent to the central path. Like SY, we interpret the prediction direction as
δp = −µω̇µ, so (1.34) and (1.36) become:

Eδp = −Eωµ, (1.37a)

δpz̄ + µH(s̄µ)δ
p
s̄ = −z̄µ, (1.37b)

which matches the form (1.28). So we let δp be the solution to:

Eδ = −Eω, (1.38a)

δz̄,k + µHk(s̄k)δs̄,k = −z̄k ∀k ∈ JK̄K. (1.38b)

Differentiating (1.15a) twice and rescaling by 1
2µ

2 gives:

E
(
1
2µ

2ω̈µ
)
= 0. (1.39)
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Differentiating z̄µ + µg(s̄µ) = 0 twice gives:

¨̄zµ + 2H(s̄µ) ˙̄sµ + µ∇3f(s̄µ)[ ˙̄sµ, ˙̄sµ] + µH(s̄µ)¨̄sµ = 0. (1.40)

Rescaling (1.40) by 1
2µ

2 and substituting the TOO definition (1.5), we have:

1
2µ

2 ¨̄zµ + µH(s̄µ)
(
1
2µ

2 ¨̄sµ
)
= µH(s̄µ)(−µ ˙̄sµ)− 1

2µ∇
3f(s̄µ)[−µ ˙̄sµ,−µ ˙̄sµ] (1.41a)

= µH(s̄µ)(−µ ˙̄sµ) + µT(s̄µ,−µ ˙̄sµ). (1.41b)

We interpret the prediction TOA direction, which adjusts the prediction direction, as δpt = 1
2µ

2ω̈.
The RHS of (1.41b) depends on ˙̄sµ, so we remove this dependency by substituting the prediction
direction δp = −µω̇µ, which we assume is already computed. Hence using (1.39) and (1.41b), we let
δpt be the solution to:

Eδ = 0, (1.42a)

δz̄,k + µHk(s̄k)δs̄,k = µHk(s̄k)δ
p
s̄,k + µTk

(
s̄k, δ

p
s̄,k

)
∀k ∈ JK̄K. (1.42b)

We note that the RHS in (1.42b) differs from the ‘higher order corrector’ RHS proposed by Dahl and
E. D. Andersen (2021, Equation 16), which has the form 1

2∇
3fk
[
δps̄,k, (Hk(s̄k))

−1δpz̄,k
]
. For example,

our form does not satisfy all of the properties in Dahl and E. D. Andersen (2021, Lemmas 3 and 4).

1.5.5 Stepping procedures

A stepping procedure computes one or more directions from Section 1.5.4 and uses the directions
to search for a new interior point. Recall from Line 5 of the high level IPM in Section 1.5.3 that
on iteration i with current iterate ωi−1, the Step procedure computes ωi satisfying π(ωi) < 1 and
either µ(ωi) < µ(ωi−1) (prediction) or π(ωi) < π(ωi−1) (centering) or both. In Section 1.5.5.1, we
describe a baseline stepping procedure mirroring that of Alfonso, which is an implementation of the
SY algorithm with worst-case polynomial time iteration complexity. This procedure, which we call
basic, alternates between prediction and centering steps and does not use the TOA directions. In
Sections 1.5.5.2 to 1.5.5.5, we describe a sequence of four cumulative enhancements to the basic
procedure. The goal is to improve iteration counts or per-iteration computational efficiency in
practice, without regard for theoretical iteration complexity guarantees. Our computational testing
in Section 1.9 assesses the value of these enhancements on a diverse set of benchmark instances.

1.5.5.1 Basic stepping procedure

First, we decide whether to perform a centering step or a prediction step. If the current iterate
ωi−1 (at the ith iteration) is very close to the central path, i.e. if the sum proximity (1.22) does not
exceed η = 0.0332, or if the most recent N = 4 steps have all been centering steps, then we compute
the prediction direction δp (note these parameter values are taken directly from Alfonso and are
based on the theoretical analysis of Papp and Yıldız (2017)). Otherwise, we compute the centering
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direction δc from (1.30). Letting j be the number of consecutive centering steps taken immediately
before the current ith iteration, the search direction is:

δ :=

δp if πℓ2(ωi−1) ≤ η or j ≥ N,

δc otherwise.
(1.43)

Next, we perform a backtracking line search in the direction δ. The search finds a step length
α̂ ∈ (0, 1) from a fixed schedule of decreasing values A = {αl}l∈JLK, where L = 18, α1 = 0.9999, and
αL = 0.0005. The next iterate ωi = ωi−1+ α̂δ becomes the first point in the backtracking line search
that satisfies πℓ2(ωi) ≤ β1 for β1 = 0.2844, which guarantees interiority by Lemma 1.5.1 (note β1 is
again taken directly from Alfonso and is based on the theoretical analysis of Papp and Yıldız (2017)).
If the backtracking search terminates without a step length satisfying the proximity condition (i.e.
αL is too large), the IPM algorithm terminates without a solution. In Section 1.7 we discuss our
implementation of the proximity check that we run for each candidate point in the backtracking
search.

The basic stepping procedure is summarized as follows. Note the centering step count j is
initialized to zero before the first iteration i = 1. Since ω0 is exactly on the central path (i.e. the
proximity is zero), the first iteration uses a prediction step.

1 Procedure BasicStep(ωi−1, j):
2 if πℓ2(ω

i−1) ≤ η or j ≥ N then ▷ choose predict or center
3 δ ← δp from (1.38) ▷ compute prediction direction
4 j ← 0

5 else
6 δ ← δc from (1.30) ▷ compute centering direction
7 j ← j + 1

8 α̂← max{α ∈ A : πℓ2(ω
i−1 + αδ) ≤ β1} ▷ compute step length by backtracking search

9 ωi ← ωi−1 + α̂δ ▷ update current iterate
10 return ωi, j

1.5.5.2 Less restrictive proximity

The basic stepping procedure in Section 1.5.5.1 requires iterates to remain in close proximity to
the central path and usually only takes prediction steps from iterates that are very close to the
central path. Although conservative proximity conditions are used to prove polynomial iteration
complexity in Papp and Yıldız (2017), they may be too restrictive from the perspective of practical
performance. To allow prediction steps from a larger neighborhood of the central path, we use the
πℓ∞ proximity measure from (1.23) instead of πℓ2 to compute the proximity of ωi−1, though we do
not change the proximity bound η. To allow the step length to be as large as possible, we use πℓ∞
instead of πℓ2 for the backtracking search proximity checks and we replace β1 from Section 1.5.5.1 by
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a larger proximity bound β2 = 0.99. By Lemma 1.5.1, β2 < 1 guarantees interiority, and our offline
sensitivity analysis on β2 suggests that 0.99 is a reasonable choice.2

The prox stepping procedure, which enhances the basic stepping procedure by relaxing the
proximity conditions somewhat, is summarized as follows.

1 Procedure ProxStep(ωi−1, j):
2 if πℓ∞(ωi−1) ≤ η or j ≥ N then ▷ use less restrictive proximity measure πℓ∞
3 δ ← δp from (1.38)
4 j ← 0

5 else
6 δ ← δc from (1.30)
7 j ← j + 1

8 α̂← max{α ∈ A : πℓ∞(ωi−1 + αδ) ≤ β2} ▷ use πℓ∞ and larger proximity bound β2
9 ωi ← ωi−1 + α̂δ

10 return ωi, j

1.5.5.3 Third order adjustments

We modify the prox stepping procedure in Section 1.5.5.2 to incorporate the new TOA directions
associated with the prediction and centering directions. In symmetric conic IPMs, it is common to
compute a step length in the unadjusted prediction direction, use this step length to compute an
adjusted direction, and then compute a step length in this final direction (see e.g. Vandenberghe
(2010, Section 5.1) for CVXOPT’s approach using the Mehrotra correction). Our approach is similar.

After deciding whether to predict or center (using the same criteria as prox ), we compute the
unadjusted direction δu (i.e. δp or δc) and its associated TOA direction δt (i.e. δpt or δct). We perform
a backtracking line search in direction δu (like prox ) and use this unadjusted step length α̂u ∈ (0, 1)

to scale down the TOA direction, letting the adjusted direction be δu + α̂uδt. We perform a second
backtracking line search in this final direction to compute the final step length α̂, using the same
techniques and proximity condition as the first line search. If we think of α̂u as an approximation
of α̂, then essentially the final step applies an adjustment of α̂2δt to α̂δu. Our derivations of the
adjustment directions in Section 1.5.4 (particularly the centering direction) suggest that this is a
reasonable heuristic for adjustment.

The TOA stepping procedure, which enhances the prox stepping procedure by incorporating the
TOA directions, is summarized as follows.

2These results are available from the Hypatia wiki at https://github.com/chriscoey/Hypatia.jl/wiki. The
experiments are run on our benchmark set from Section 1.9.
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1 Procedure TOAStep(ωi−1, j):
2 if πℓ∞(ωi−1) ≤ η or j ≥ N then
3 δu ← δp from (1.38)
4 δt ← δpt from (1.42) ▷ compute prediction TOA direction
5 j ← 0

6 else
7 δu ← δc from (1.30)
8 δt ← δct from (1.32) ▷ compute centering TOA direction
9 j ← j + 1

10 α̂u ← max{α ∈ A : πℓ∞(ωi−1 + αδu) ≤ β2} ▷ perform line search for unadjusted
direction

11 δ ← δu + α̂uδt ▷ compute final direction
12 α̂← max{α ∈ A : πℓ∞(ωi−1 + αδ) ≤ β2}
13 ωi ← ωi−1 + α̂δ

14 return ωi, j

1.5.5.4 Curve search

The TOA stepping procedure in Section 1.5.5.3 performs two backtracking line searches, which can
be quite expensive. We propose using a single backtracking search along a curve that is quadratic
in the step parameter α and linear in the unadjusted and TOA directions. Recall from Line 11
of the TOA procedure that we compute a direction δ as a linear function of the step parameter
from the first line search. Substituting this δ function into the usual linear trajectory gives the
curved trajectory ωi−1 + α(δu + αδt) for α ∈ (0, 1), where δu and δt are the unadjusted and TOA
directions (as in the TOA procedure). Intuitively, a backtracking search along this curve achieves a
more dynamic rescaling of the TOA direction.

The curve stepping procedure, which enhances the TOA stepping procedure by using a search
on a curve instead of two line searches, is summarized as follows.
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1 Procedure CurveStep(ωi−1, j):
2 if πℓ∞(ωi−1) ≤ η or j ≥ N then
3 δu ← δp from (1.38)
4 δt ← δpt from (1.42)
5 j ← 0

6 else
7 δu ← δc from (1.30)
8 δt ← δct from (1.32)
9 j ← j + 1

10 let ω̂(α) := ωi−1 + α(δu + αδt) ▷ use curved trajectory
11 α̂← max{α ∈ A : πℓ∞(ω̂(α)) ≤ β2}
12 ωi ← ω̂(α̂)

13 return ωi, j

1.5.5.5 Combined directions

Unlike Skajaa and Ye (2015) and Papp and Yıldız (2021), most conic IPMs combine the prediction
and centering phases (e.g. Vandenberghe (2010) and Dahl and E. D. Andersen (2021)). We propose
using a single search on a curve that is quadratic in the step parameter α and linear in all four
directions δc, δct, δp, δpt from Section 1.5.5.3. Intuitively, we can step further in a convex combination
of the prediction and centering directions than we can in just the prediction direction. In practice,
a step length of one is usually ideal for the centering phase, so we can imagine performing a
backtracking search from the point obtained from a pure prediction step (with step length one)
towards the point obtained from a pure centering step, terminating when we are close enough to the
centering point to satisfy the proximity condition. This approach fundamentally differs from the
previous procedures we have described because the search trajectory does not finish at the current
iterate ωi−1. If ω̂p(α) and ω̂c(α) are the prediction and centering curve search trajectories from
Line 10 of the curve procedure, then we define the combined trajectory as ω̂(α) = ω̂p(α) + ω̂c(1−α).
Note that α = 1 corresponds to a full step in the adjusted prediction direction δp + δpt, and α = 0

corresponds to a full step in the adjusted centering direction δc + δct.
The comb stepping procedure, which enhances the curve stepping procedure by combining

the prediction and centering phases, is summarized as follows. Note that unlike the previous
procedures, there is no parameter j counting consecutive centering steps. Occasionally in practice,
the backtracking search on Line 4 below fails to find a positive step value, in which case we perform
a centering step according to Lines 10 to 12 of the curve procedure.
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1 Procedure CombStep(ωi−1):
2 compute δc, δct, δp, δpt from (1.30), (1.32), (1.38) and (1.42) ▷ use four directions instead

of two
3 let ω̂(α) := ωi−1 + α(δp + αδpt) + (1− α)(δc + (1− α)δct) ▷ use combined trajectory
4 α̂← max{α ∈ A : πℓ∞(ω̂(α)) ≤ β2}
5 ωi ← ω̂(α̂)

6 return ωi

1.6 Preprocessing and solving for search directions

In this section, we discuss preprocessing and initial point finding procedures and techniques for
solving structured linear systems for directions. Although Hypatia has various alternative options
for these procedures, we only describe the set of options we fix in our computational experiments in
Section 1.9, to give context for these results. These techniques are likely to be useful for other conic
IPM implementations.

Given a conic model specified in the general primal conic form (1.7), we first rescale the primal
and dual equality constraints (1.7b) and (1.8b) to improve the conditioning of the affine data.
Next, we perform a QR factorization of A′ and check whether any primal equalities are inconsistent
(terminating if so). We use this factorization to modify c,G, h and eliminate all p primal equalities
(removing dual variable y), reducing the dimension of the primal variable x from n to n− p. Next,
we perform a QR factorization of the modified G. We use this factorization to check whether any
dual equalities are inconsistent (terminating if so) and to remove any redundant dual equalities,
further reducing the dimension of x. This factorization also allows us to cheaply compute an initial
x0 satisfying (1.17c). Since y is eliminated, we do not need to solve (1.18b) for y0.

Starting from the initial interior point ω0 defined in Section 1.5.1, we perform IPM iterations
until the convergence conditions in Section 1.5.3 (in the preprocessed space) are met. Finally, we
re-use the two QR factorizations to lift the approximate certificate for the preprocessed model to
one for the original model. The residual norms for the lifted certificate could violate the convergence
tolerances, but we have not found such violations to be significant on our benchmark instances.

During each IPM iteration, we solve the linear system (1.28) for a single LHS matrix and between
one and four RHS vectors, to obtain directions vectors needed for one of the stepping procedures
described in Section 1.5.5. Instead of factorizing the large square nonsymmetric block-sparse LHS
matrix, we utilize its structure to reduce the size of the factorization needed. Some of these techniques
are adapted from methods in CVXOPT (see Vandenberghe (2010, Section 10.3)).

First we eliminate s and κ, yielding a square nonsymmetric system, then we eliminate τ to get a
symmetric indefinite system in x and z. Most interior point solvers use a sparse LDL factorization
(with precomputed symbolic factorization) to solve this system. Although Hypatia can optionally
do the same, we see improved performance on our benchmark instances by further reducing the
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system. After eliminating z, we have a (generally dense) positive definite system, which we solve via
a dense Cholesky factorization. In terms of the original dimensions of the model before preprocessing
(assuming no redundant equalities), the side dimension of this system is n− p. Finally, after finding
a solution to (1.28), we apply several rounds of iterative refinement in working precision to improve
the solution quality.

We note that this Cholesky-based system solver method does not require explicit Hessian oracles,
only oracles for left-multiplication by the Hessian or inverse Hessian. As we discuss in Sections 2.5,
2.6, 3.5 and 3.7, these optional oracles can be more efficient and numerically stable to compute for
many exotic cones. For cones without these oracles, Hypatia calls the explicit Hessian matrix oracle,
performing a Cholesky factorization of the Hessian if necessary. A deeper discussion of Hypatia’s
linear system solving techniques and optional cone oracles is outside the scope of this chapter.

1.7 Efficient proximity checks

In this section, we describe how Hypatia performs efficient backtracking searches and proximity
checks. Recall that each stepping procedure in Section 1.5.5 uses at least one backtracking search
(on a line or a curve) to find a point ω satisfying an aggregate proximity condition: πℓ2(ω) ≤ β1

for the basic procedure in Section 1.5.5.1 or πℓ∞(ω) ≤ β2 for the procedures in Sections 1.5.5.2
to 1.5.5.5. In Section 1.5.2, we define πℓ2 and πℓ∞ in (1.22) and (1.23). For each primitive cone
k ∈ JK̄K, 0 ≤ πk(ω) ≤ πℓ∞(ω) ≤ πℓ2(ω), and by Lemma 1.5.1, πk(ω) < 1 implies s̄k ∈ int

(
K̄k
)

and
z̄k ∈ int

(
K̄∗
k

)
. We use a schedule of decreasing trial values for the step parameter α and accept the

first value that yields a candidate point satisfying the aggregate proximity condition.
Suppose at a particular iteration of the backtracking search, we have the candidate point ω. We

check a sequence of increasingly expensive conditions that are necessary for the proximity condition
to hold for ω. First, we verify that s̄′kz̄k > 0,∀k ∈ JK̄K, which is necessary for interiority (by a strict
version of the dual cone inequality (1.1)). Note that this condition implies µ(ω) > 0. Next, we verify
that ρk(ω) < β,∀k ∈ JK̄K, where ρk(ω) is:

ρk(ω) := ν
−1/2
k |s̄′kz̄k/µ− νk| ≥ 0. (1.44)

In Lemma 1.7.1 below, we show that ρk(ω) is a lower bound on πk(ω), so if ρk(ω) > β then then
πk(ω) > β. Computing ρk is much cheaper than computing πk(ω) as it does not require evaluating
any cone oracles.

Next, we iterate over k ∈ JK̄K to check first the primal feasibility oracle, then the optional
dual feasibility oracle if implemented, and finally the proximity condition πk(ω) < β. Before
computing πk(ω), we check that the gradient and Hessian oracle evaluations approximately satisfy
two logarithmic homogeneity conditions (Nesterov and Nemirovski, 1994, Proposition 2.3.4):

(gk(s̄k))
′(Hk(s̄k))

−1gk(s̄k) = −s̄′kgk(s̄k) = νk. (1.45)

This allows us to reject ω if the cone oracles and the proximity value πk(ω) are likely to be numerically
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inaccurate.

Lemma 1.7.1. Given a point ω for which µ(ω) > 0, for each k ∈ JK̄K, 0 ≤ ρk(ω) ≤ πk(ω).

Proof. We fix µ = µ(ω) > 0 for convenience. Let fk be the νk-LHSCB for K̄k, and let the conjugate
of fk be f∗k (see (1.3)), which is a νk-LHSCB for K̄∗

k. Let g∗k := ∇f∗k and H∗
k := ∇2f∗k denote the

gradient and Hessian operators for f∗k . Using the logarithmic homogeneity properties from Nesterov
and Nemirovski (1994, Proposition 2.3.4), and from the definition of πk(ω) in (1.20), we have:

(πk(ω))
2 = (z̄k/µ+ gk(s̄k))

′(Hk(s̄k))
−1(z̄k/µ+ gk(s̄k)) (1.46a)

= µ−2z̄′k(Hk(s̄k))
−1z̄k + 2µ−1z̄′k(Hk(s̄k))

−1gk(s̄k) + (gk(s̄k))
′(Hk(s̄k))

−1gk(s̄k) (1.46b)

= µ−2z̄′k(Hk(s̄k))
−1z̄k − 2µ−1z̄′ks̄k + νk. (1.46c)

By Papp and Yıldız (2017, Equation 13), (Hk(s̄k))
−1 = H∗

k(−gk(s̄k)). Since f∗k is a self-concordant
barrier with parameter νk, by Nesterov et al. (2018, Equation 5.3.6) we have: (z̄′kg

∗
k(−gk(s̄k)))2 ≤

νkz̄
′
kH

∗
k(−gk(s̄k))z̄k. Furthermore, g∗k(−gk(s̄k)) = s̄k. Using these facts, from (1.46) we have

ρk(ω) ≥ 0 and:

(πk(ω))
2 = µ−2z̄′kH

∗
k(−gk(s̄k))z̄k − 2µ−1z̄′ks̄k + νk (1.47a)

≥ ν−1
k µ−2(z̄′ks̄k)

2 − 2µ−1z̄′ks̄k + νk (1.47b)

= ν−1
k (s̄′kz̄k/µ− νk) (1.47c)

= (ρk(ω))
2. (1.47d)

Therefore, πk(ω) ≥ ρk(ω) ≥ 0 for all k ∈ JK̄K.

As an aside, we can use similar arguments to Lemma 1.7.1 to show that ρk(ω) also symmetrically
bounds a conjugate proximity measure π∗k(ω), which we define as:

π∗k(ω) :=
∥∥(H∗

k(z̄k))
−1/2(s̄k/µ+ g∗k(z̄k))

∥∥ ≥ ν−1/2
k |z̄′k(s̄k/µ+ g∗k(z̄k))| = ρk(ω). (1.48)

In general, we cannot check whether π∗k(ω) < β because as we discuss in Section 1.1.2 we do not
have access to fast and numerically stable conjugate barrier oracles (g∗k and H∗

k).

1.8 Oracles for predefined exotic cones

Below we list two dozen exotic cone types that we have predefined through Hypatia’s generic cone
interface (see Section 1.3). Each of these cones is represented in the benchmark set of conic instances
that we introduce in Section 1.9.1. Recall that we write any exotic cone K in vectorized form, i.e. as
a subset of Rq, where q = dim(K) ≥ 1 is the cone dimension. We define vectorization operators in
Section 0.3. Each cone is parametrized by at least one dimension and several cones have additional
parameters such as numerical data; for convenience, we drop these parameters from the symbols
we use to represent cone types. For each cone, we define the LHSCB that Hypatia uses below, and
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we list the associated barrier parameter ν in Table 1.1. For several cones, we have implemented
additional variants over complex numbers, but we omit these definitions here for simplicity. In
general, the complex variants have the same oracle complexities and barrier parameters as the real
variants.

Nonnegative cone. K≥ := R≥ is the (self-dual) nonnegative real vectors. We use the LHSCB
f(w) = − log(w) (Nesterov, Todd, and Ye, 1997, Section 2.1).

Positive semidefinite (PSD) matrix cone. K⪰ :=
{
w ∈ Rsd(d) : mat(w) ∈ Sd⪰

}
is the (self-

dual) PSD matrices of side dimension d. We also implement a complex Hermitian variant; see
Section 2.2.1.1. We use the LHSCB f(w) = − logdet(mat(w)) (Nesterov, Todd, and Ye, 1997,
Section 2.2).

Doubly nonnegative cone. KDNN := K≥ ∩K⪰ is the PSD matrices with nonnegative entries. For
side dimension d, we use the LHSCB f(w) = − logdet(mat(w))−

∑
j∈JdK,i∈Jj−1K log(mat(w)i,j).

Sparse PSD cone. KsPSD is the PSD matrices of side dimension s with a fixed sparsity pattern S
containing d ≥ s nonzeros (including all diagonal elements); see Section 2.5.3. The dual cone
K∗

sPSD is the symmetric matrices with pattern S for which there exists a PSD completion, i.e.
an assignment of the elements not in S such that the full matrix is PSD. For simplicity, the
complexity estimates in Table 1.1 assume the nonzeros are grouped under J ≥ 1 supernodes,
each containing at most l nodes, and the monotone degree of each node is no greater than a
constant D (M. S. Andersen, Dahl, and Vandenberghe, 2013). We also implement a complex
Hermitian variant. We use the LHSCB in Section 2.5.3.

Linear matrix inequality cone. KLMI :=
{
w ∈ Rd :

∑
i∈JdKwiPi ∈ Ss⪰

}
are the vectors for which

the matrix pencil of d matrices Pi ∈ Ss, ∀i ∈ JdK is PSD. We assume P1 ≻ 0 so that we can
use the initial interior point e1. We also allow the Pi to be complex Hermitian. We use the
LHSCB in Section 2.5.1.

Euclidean norm cone. Kℓ2 := {(u,w) ∈ R≥ × Rd : u ≥ ∥w∥} is the (self-dual) epigraph of the
ℓ2 norm on Rd (AKA second order cone). We use the LHSCB f(u,w) = − log(u2 − ∥w∥2)
(Nesterov, Todd, and Ye, 1997, Section 2.3).

Euclidean norm square cone. Ksqr := {(u, v, w) ∈ R≥×R≥×Rd : 2uv ≥ ∥w∥2} is the (self-dual)
epigraph of the perspective of the square of the ℓ2 norm on Rd (AKA rotated second order
cone). We use the LHSCB f(u, v, w) = − log(2uv − ∥w∥2) (Nesterov, Todd, and Ye, 1997,
Section 2.3).

Infinity norm cone. Kℓ∞ := {(u,w) ∈ R≥ × Rd : u ≥ ∥w∥∞} is the epigraph of the ℓ∞ norm on
Rd; see Section 2.2.2.1. The dual cone K∗

ℓ∞
is the epigraph of the ℓ1 norm. We also implement

a complex vector variant. We use the LHSCB f(u,w) = (d− 1) log(u)−
∑

i∈JdK log(u
2 − w2

i )

(Güler, 1996, Section 7.5).
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Symmetric matrix spectral norm cone. Kℓsspec := {(u,w) ∈ R≥ × Rsd(d) : u ≥ σ1(W )}, where
W := mat(w) ∈ Sd and σ1(W ) is the ℓ∞ norm of the eigenvalues of W , is the epigraph of the
spectral norm on the symmetric matrices; see Section 2.2.2.2. Similarly, K∗

ℓsspec
is the epigraph

of the symmetric matrix nuclear norm (ℓ1 norm of eigenvalues). We also implement a complex
Hermitian variant. We specialize the Kℓspec LHSCB given below.

Rectangular matrix spectral norm cone. Kℓspec := {(u,w) ∈ R≥ × Rds : u ≥ σ1(W )}, where
W := mat(w) ∈ Rd×s and σ1 is the largest singular value function, is the epigraph of the
spectral norm, assuming d ≤ s without loss of generality; see Sections 2.2.2.2 and 2.6. Similarly,
K∗
ℓspec

is the epigraph of the matrix nuclear norm (sum of singular values). We also implement
a complex matrix variant. We use the LHSCB f(u,w) = (d−1) log(u)− logdet(u2I(d)−WW ′)

(Nesterov and Nemirovski, 1994, Section 5.4.6).

Matrix square cone. Kmatsqr :=
{
(u, v, w) ∈ Rsd(d) × R≥ × Rds : U ∈ Sd⪰, 2Uv ⪰ WW ′}, where

U := mat(u) and W := mat(w) ∈ Rd×s, is the homogenized symmetric matrix epigraph of
the symmetric outer product, assuming d ≤ s without loss of generality (Güler and Tunçel,
1998). We also implement a complex matrix variant. We use the LHSCB f(u, v, w) =

(d− 1) log(v)− logdet(2vU −WW ′) (Tunçel et al., 2004).

Generalized power cone. Kgpow :=
{
(u,w) ∈ Rr≥ × Rs :

∏
i∈JrKu

αi
i ≥ ∥w∥

}
, parametrized by

exponents α ∈ Rr> with e′α = 1, is the generalized power cone (Chares, 2009, Section 3.1.2).
We use the LHSCB f(u,w) = − log

(∏
i∈JrKu

2αi
i − ∥w∥2

)
−
∑

i∈JrK(1 − αi) log(ui) (Roy and
Xiao, 2021).

Power mean cone. Kpow :=
{
(u,w) ∈ R × Rd≥ : u ≤

∏
i∈JdKw

αi
i

}
, parametrized by exponents

α ∈ Rd> with e′α = 1, is the hypograph of the power mean on Rd≥. We use the LHSCB
f(u,w) = − log

(∏
i∈JdKw

αi
i − u

)
−
∑

i∈JdK log(wi) (Nesterov et al., 2018, Section 5.4.7).

Geometric mean cone. Kgeo is the hypograph of the geometric mean on Rd≥, a special case of
Kpow with equal exponents; see Section 2.2.3.1.

Root-determinant cone. Krtdet :=
{
(u,w) ∈ R × Rsd(d) : W ∈ Sd⪰, u ≤ (det(W ))1/d

}
, where

W := mat(w), is the hypograph of the dth-root-determinant on Sd⪰; see Section 2.2.3.1. We also
implement a complex Hermitian variant. We use the LHSCB f(u,w) = − log((det(W ))1/d −
u)− logdet(W ) from Proposition 3.7.1.

Logarithm cone. Klog := cl
{
(u, v, w) ∈ R× R> × Rd> : u ≤

∑
i∈JdKv log(wi/v)

}
is the hypograph

of the perspective of the sum of logarithms on Rd>; see Section 2.2.3.2. We use the LHSCB
f(u, v, w) = − log

(∑
i∈JdKv log(wi/v)− u

)
− log(v)−

∑
i∈JdK log(wi) from Proposition 3.6.1.

Log-determinant cone. Klogdet := cl
{
(u, v, w) ∈ R× R> × Rsd(d) :W ∈ Sd≻, u ≤ v logdet(W/v)

}
,

where W := mat(w), is the hypograph of the perspective of the log-determinant on Sd≻;
see Section 2.2.3.2. We also implement a complex Hermitian variant. We use the LHSCB
f(u, v, w) = − log(v logdet(W/v)− u)− log(v)− logdet(W ) from Proposition 3.6.1.
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Separable spectral function cone. Ksep := cl{(u, v, w) ∈ R × R> × int(Q) : u ≥ vφ(w/v)},
where Q is a cone of squares of a Jordan algebra, is the epigraph of the perspective of a
convex separable spectral function φ : int(Q)→ R, such as the trace of the negative logarithm,
negative entropy, or power in (1, 2]; see Sections 2.2.3.3 and 3.6 for suitable cones of squares
and separable spectral functions. The complexity estimates in Table 1.1 depend on whether Q
is a vector domain (K≥) or a symmetric/Hermitian matrix domain (K⪰). We use the LHSCB
f(u, v, w) = − log(u− vφ(w/v))− log(v)− logdet(w) from Proposition 3.6.1.

Relative entropy cone. Krelent := cl
{
(u, v, w) ∈ R × Rd> × Rd> : u ≥

∑
i∈JdKwi log(wi/vi)

}
is the

epigraph of the vector relative entropy function. We use the LHSCB f(u, v, w) = − log
(
u−∑

i∈JdKwi log(wi/vi)
)
−
∑

i∈JdK(log(vi) + log(wi)) (Karimi and Tunçel, 2020a, Appendix E).

Matrix relative entropy cone. Kmatrelent := cl
{
(u, v, w) ∈ R × Rsd(d) × Rsd(d) : V ∈ Sd≻,W ∈

Sd≻, u ≥ tr(W (log(W ) − log(V )))
}
, where V := mat(v) and W := mat(w), is the epigraph

of the matrix relative entropy function. We use the logarithmically homogeneous barrier
f(u, v, w) = − log(u− tr(W (log(W )− log(V ))))− logdet(V )− logdet(W ), which is conjectured
to be self-concordant by Karimi and Tunçel (2020a).

Polynomial weighted sum-of-squares (SOS) cones. An interpolant basis represents a poly-
nomial implicitly by its evaluations at a fixed set of d points. Given a basic semialgebraic
domain defined by r polynomial inequalities, the four SOS cones below are parameterized
by matrices Pl ∈ Rd×sl for l ∈ JrK. Each Pl is constructed by evaluating sl independent
polynomials (columns) at the d points (rows), following Papp and Yıldız (2019). For simplicity,
the complexity estimates in Table 1.1 assume sl = s, ∀l ∈ JrK. Note that s < d ≤ s2. We
define KSOS and KmatSOS in Section 2.2.1.3, and Kℓ1SOS and Kℓ2SOS in Kapelevich, Coey, and
Vielma (2021, Equations 2.7 and 4.10). We use LHSCBs for the dual cones of these SOS cones.
For K∗

SOS and K∗
matSOS, we discuss the LHSCBs in Section 2.5.2. For K∗

ℓ1SOS and K∗
ℓ2SOS, the

LHSCBs require more complex notation, so we refer the reader to Kapelevich, Coey, and
Vielma (2021).

Scalar SOS cone. KSOS is a cone of polynomials that are guaranteed to be nonnegative
pointwise on the domain. We also implement a real-valued complex polynomial (Hermitian
SOS) variant, for which the Pl matrices are complex.

Symmetric matrix SOS cone. KmatSOS is a cone of polynomial symmetric matrices (in an
svec-like format) of side dimension t that are guaranteed to belong to S⪰ pointwise on
the domain. We let m := st+ d in Table 1.1 for succinctness.

ℓ1 epigraph SOS cone. Kℓ1SOS is a cone of polynomial vectors of length 1 + t that are
guaranteed to belong to K∗

ℓ∞
pointwise on the domain.

ℓ2 epigraph SOS cone. Kℓ2SOS is a cone of polynomial vectors of length 1 + t that are
guaranteed to belong to Kℓ2 pointwise on the domain.
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For each cone, we have an analytic/closed form for the feasibility check, gradient, Hessian, and
TOO oracles defined in Section 1.3. That is, we always avoid iterative numerical procedures such as
optimization, which are typically slow, numerically unstable, and require tuning. Hypatia’s algorithm
always evaluates the feasibility check before the gradient, Hessian, and TOO (which are only defined
at strictly feasible points), and the gradient is evaluated before the Hessian and TOO. For most of
these cones, the feasibility check and gradient oracles compute values and factorizations that are
also useful for computing the Hessian and TOO, so this data is cached in the cone data structures
and reused where possible. In Table 1.1, we estimate the time complexities (ignoring constants) of
these four oracles for each cone, counting the cost of cached values and factorizations only once (for
the oracle that actually computes them). Table 1.1 shows that the TOO is never more expensive
than the feasibility check, gradient, and Hessian oracles (i.e. the oracles needed by SY). Indeed,
our computational results in Section 1.9.3 demonstrate that the TOO is very rarely an algorithmic
bottleneck in practice.

Table 1.1: Cone dimension dim(K), LHSCB parameter ν, and time complexity estimates (ignoring
constants) for our feasibility check, gradient, Hessian, and TOO implementations, for the exotic
cones defined in Section 1.8.

cone dim(K) ν feasibility gradient Hessian TOO

K≥ d d d d d d
K⪰ sd(d) d d3 d3 d4 d3

KDNN sd(d) sd(d) d3 d3 d4 d3

KsPSD d s JD2l JD2l dJD2l JD2l
KLMI d s ds2 + s3 ds3 d2s2 ds2 + s3

Kℓ2 , Ksqr 1 + d 2 d d d2 d
Kℓ∞ 1 + d 1 + d d d d d
Kℓsspec 1 + sd(d) 1 + d d3 d3 d4 d3

Kℓspec 1 + ds 1 + d d2s+ d3 d2s d2s2 d2s
Kmatsqr sd(d) + 1 + ds 1 + d d2s+ d3 d2s+ d3 d2s2 ds2

Kgpow r + s 1 + r r + s r + s r2 + s2 r + s
Kpow, Kgeo 1 + d 1 + d d d d2 d
Krtdet 1 + sd(d) 1 + d d3 d3 d4 d3

Klog 2 + d 2 + d d d d2 d
Klogdet 2 + sd(d) 2 + d d3 d3 d4 d3

Ksep(R) 2 + d 2 + d d d d2 d
Ksep(S) 2 + sd(d) 2 + d d3 d3 d5 d3

Krelent 1 + 2d 1 + 2d d d d2 d
Kmatrelent 1 + 2 sd(d) 1 + 2d d3 d3 d5 d4

K∗
SOS d sr ds2r ds2r d2sr ds2r

K∗
matSOS d sd(t) str ms2t2r ds2t2r d2st3r ms2t2r
K∗
ℓ1SOS d(1 + t) str ds2tr ds2tr d2str ds2tr

K∗
ℓ2SOS d(1 + t) 2sr ds2tr ds2tr d2st2r ds2t2r

Our TOO in (1.5) is distinct from the ‘higher order corrector’ terms proposed by Mehrotra (1992)
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and Dahl and E. D. Andersen (2021). The method by Mehrotra (1992) only applies to symmetric
cones, and Dahl and E. D. Andersen (2021) test their technique only for the standard exponential
cone. Compared to the third order term proposed by Dahl and E. D. Andersen (2021), our TOO has
a simpler and more symmetric structure, as it relies on only one direction δs̄ rather than two. Like
the gradient and Hessian oracles, our TOO is additive for sums of LHSCBs, which can be useful for
cones (such as K∗

SOS and KDNN) that are defined as intersections of other cones. We leverage these
properties to obtain fast and numerically stable TOO implementations.

To illustrate, we give the oracles for Kℓ2 ,Ksqr ⊂ Rq. We use the standard LHSCBs with
parameter ν = 2 from Vandenberghe (2010, Section 2.2) and Nesterov, Todd, and Ye (1997, Section
2.3). For Kℓ2 ,Ksqr, the LHSCB is f(s) = − log(s′Js), where J ∈ Sq is defined according to, for
i, j ∈ JqK : i ≥ j:

Ji,j :=


1 if j = 1 and (i = 1 for Kℓ2 or i = 2 for Ksqr),

−1 if i = j and (i > 1 for Kℓ2 or i > 2 for Ksqr),

0 otherwise.

(1.49)

Consider s ∈ int(K) and direction δ ∈ Rq, and let J̄ = (s′Js)−1 > 0. The gradient, Hessian product,
and TOO oracles for K are:

g(s) = −2J̄Js, (1.50a)

H(s)δ = 2J̄(2J̄Jss′Jδ − Jδ), (1.50b)

T(s, δ) = J̄(Jsδ′Hδ +Hδs′Jδ − s′HδJδ). (1.50c)

These oracles are computed in O(q) time. The explicit Hessian matrix is computed in O(q2) time
as:

H(s) = 2J̄(2J̄Jss′J − J). (1.51)

1.9 Computational testing

In Section 1.9.1, we introduce a diverse set of exotic conic benchmark instances generated from
a variety of applied examples. In Section 1.9.2, we describe our methodology for comparing the
stepping procedures from Section 1.5.5, and in Section 1.9.3 we examine our computational results.

1.9.1 Exotic conic benchmark set

We generate 379 instances (in our primal general form (1.7)) from 37 applied examples in Hypatia’s
examples folder. All instances are primal-dual feasible except for 12 that are primal infeasible and
one that is dual infeasible. For most examples, we construct multiple formulations using different
predefined exotic cones from the list in Section 1.8. Each cone from this list appears in at least
one instance, so we consider our benchmark set to be the most diverse collection of conic instances
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available.
We generate most instances using JuMP, but for some we use Hypatia’s native model interface.

Due to the size of some instances and the lack of a standard instance storage format recognizing our
cone types, we generate all instances on the fly in Julia. For instances that use random data, we set
random seeds to ensure reproducibility. Figure 1.1 shows the distributions of instance dimensions
and exotic cone counts. All instances have at least one cone (note any K≥ cones are concatenated
together, so K≥ is counted at most once) and take at least one iteration to solve with Hypatia.

Below we briefly introduce each example. In Table 1.2, we summarize for each example the
number of corresponding instances and the cone types represented in at least one of the instances.
We do not distinguish dual cones and primal cones in this summary (for example, instances that
use K∗

ℓ∞
are only listed as using Kℓ∞). For some examples, we describe a subset of formulations in

Sections 2.3 and 3.8 and Kapelevich, Coey, and Vielma (2021). Our benchmark set includes ten
instances from CBLIB (a conic benchmark instance library, see Friberg (2016)). We chose to avoid
running a larger sample of instances from CBLIB so that the relatively few cone types supported by
CBLIB version 3 are not over-represented in our benchmark set.

Central polynomial matrix. Minimize a spectral function of a gram matrix of a polynomial. See
Section 3.8.4.3.

Classical-quantum capacity. Compute the capacity of a classical-to-quantum channel. Adapted
from H. Fawzi and O. Fawzi (2018, Section 3.1). See Section 3.8.4.4.

Condition number. Minimize the condition number of a matrix pencil subject to a linear matrix
inequality. Adapted from Boyd, El Ghaoui, et al. (1994, Section 3.2).

Contraction analysis. Find a contraction metric that guarantees global stability of a dynamical
system. Adapted from Aylward, Parrilo, and Slotine (2008, Section 5.3). Six instances are
primal infeasible.

Convexity parameter. Find the strong convexity parameter of a polynomial function over a
domain.

Covariance estimation. Estimate a covariance matrix that satisfies some given prior information
and minimizes a given convex spectral function.

Density estimation. Find a valid polynomial density function maximizing the likelihood of a set
of observations. Adapted from Papp and Alizadeh (2014, Section 4.3). See Section 2.3.6.

Discrete maximum likelihood. Maximize the likelihood of some observations at discrete points,
subject to the probability vector being close to a uniform prior.

D-optimal design. Solve a D-optimal experiment design problem, i.e. maximize the determinant
of the information matrix subject to side constraints. Adapted from Boyd and Vandenberghe
(2004, Section 7.5). See Section 2.3.4.
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Entanglement-assisted capacity. Compute a quantum channel’s entanglement-assisted classical
capacity. Adapted from H. Fawzi and O. Fawzi (2018, Section 3.2).

Experiment design. Solve a general experiment design problem that minimizes a given convex
spectral function of the information matrix subject to side constraints. Adapted from Boyd
and Vandenberghe (2004, Section 7.5). See Section 3.8.4.2.

Linear program. Solve a simple linear program.

Lotka-Volterra. Find an optimal controller for a Lotka-Volterra model of population dynamics.
Adapted from Korda, Henrion, and Jones (2016, Section 7.2).

Lyapunov stability. Minimize an upper bound on the root mean square gain of a dynamical
system. Adapted from Boyd, El Ghaoui, et al. (1994, Section 6.3.2) and Boyd (2009, Page 6).

Matrix completion. Complete a rectangular matrix by minimizing the nuclear norm and con-
straining the missing entries. Adapted from Agrawal, Diamond, and Boyd (2019, Equation 8).
See Section 2.3.2.

Matrix quadratic. Find a rectangular matrix that minimizes a linear function and satisfies a
constraint on the outer product of the matrix.

Matrix regression. Solve a multiple-output (or matrix) regression problem with regularization
terms, such as ℓ1, ℓ2, or nuclear norm. See Section 2.3.3.

Maximum volume hypercube. Find a maximum volume hypercube (with edges parallel to the
axes) inside a given polyhedron or ellipsoid. Adapted from MOSEK ApS (2020a, Section 4.3.2).

Nearest correlation matrix. Compute the nearest correlation matrix in the quantum relative
entropy sense. Adapted from H. Fawzi, Saunderson, and Parrilo (2019).

Nearest polynomial matrix. Given a symmetric matrix of polynomials H, find a polynomial
matrix Q that minimizes the sum of the integrals of its elements over the unit box and
guarantees Q−H is pointwise PSD on the unit box.

Nearest PSD matrix. Find a sparse PSD matrix or a PSD-completable matrix (with a given
sparsity pattern) with constant trace that maximizes a linear function. Adapted from Y. Sun
and Vandenberghe (2015).

Nonparametric distribution. Given a random variable taking values in a finite set, compute the
distribution minimizing a given convex spectral function over all distributions satisfying some
prior information. See Section 3.8.4.1.

Norm cone polynomial. Given a vector of polynomials, check a sufficient condition for pointwise
membership in Kℓ2 or K∗

ℓ∞
. Four instances are primal infeasible.
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Polynomial envelope. Find a polynomial that closely approximates, over the unit box, the lower
envelope of a given list of polynomials. Adapted from Papp and Yıldız (2019, Section 7.2.1).

Polynomial minimization. Compute a lower bound for a given polynomial over a given semial-
gebraic set. Adapted from Papp and Yıldız (2019, Section 7.3.1). See Section 2.3.5. Some
instances use polynomials with known optimal values from Burkardt (2016).

Polynomial norm. Find a polynomial that, over the unit box, has minimal integral and belongs
pointwise to the epigraph of the ℓ1 or ℓ2 norm of other given polynomials. See Kapelevich,
Coey, and Vielma (2021, Section 6).

Portfolio. Maximize the expected returns of a stock portfolio and satisfy various risk constraints.
See Section 2.3.1.

Region of attraction. Find the region of attraction of a polynomial control system. Adapted from
Henrion and Korda (2013, Section 9.1).

Relative entropy of entanglement. Compute a lower bound on relative entropy of entanglement
with a positive partial transpose relaxation. Adapted from H. Fawzi and O. Fawzi (2018,
Section 4).

Robust geometric programming. Bound the worst-case optimal value of an uncertain signomial
function with a given coefficient uncertainty set. Adapted from Chandrasekaran and Shah
(2017, Equation 39).

Semidefinite polynomial matrix. Check a sufficient condition for global convexity of a given
polynomial. Two instances are primal infeasible and one is dual infeasible.

Shape constrained regression. Given a dataset, fit a polynomial function that satisfies shape
constraints such as monotonicity or convexity over a domain. See Section 2.3.7. Several
instances use real datasets from Mazumder et al. (2019).

Signomial minimization. Compute a global lower bound for a signomial function. Adapted from
Murray, Chandrasekaran, and Wierman (2020). Several instances use signomials with known
optimal values from Murray, Chandrasekaran, and Wierman (2020) and Chandrasekaran and
Shah (2016).

Sparse LMI. Optimize over a simple linear matrix inequality with sparse data.

Sparse principal components. Solve a convex relaxation of the problem of approximating a
symmetric matrix by a rank-one matrix with a cardinality-constrained eigenvector. Adapted
from d’Aspremont et al. (2007, Section 2).

Stability number. Given a graph, solve for a particular strengthening of the theta function towards
the stability number. Adapted from Laurent and Piovesan (2015, Equation 2.4).
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Table 1.2: For each example, the count of instances and list of exotic cones (defined in Section 1.8)
used in at least one instance.

example # cones in at least one instance

CBLIB 10 K≥ K⪰ Kℓ2 Ksqr Klog Kgpow

central polynomial matrix 24 K≥ K⪰ Ksqr Kgpow Krtdet Klog Ksep

classical-quantum capacity 9 K≥ K⪰ Klog Ksep

condition number 6 K≥ K⪰ KLMI

contraction analysis 8 K⪰ KmatSOS

convexity parameter 7 K⪰ KmatSOS

covariance estimation 13 K≥ K⪰ Ksqr Kgpow Krtdet Klog Ksep

density estimation 16 K≥ K⪰ Ksqr Kgeo Klog KSOS

discrete maximum likelihood 7 K≥ Kpow Klog Ksep

D-optimal design 16 K≥ K⪰ Kℓ∞ Kℓ2 Ksqr Kgeo Krtdet Klog Klogdet

entanglement-assisted capacity 3 K⪰ Ksep Kmatrelent

experiment design 13 K≥ K⪰ Ksqr Kgpow Krtdet Klog Ksep

linear program 3 K≥
Lotka-Volterra 3 K⪰

Lyapunov stability 10 K⪰ Kmatsqr

matrix completion 11 K≥ K⪰ Ksqr Kℓspec Kgpow Kgeo Klog

matrix quadratic 8 K⪰ Kmatsqr

matrix regression 11 K≥ K⪰ Kℓ∞ Kℓ2 Ksqr Kℓspec
maximum volume hypercube 15 K≥ Kℓ∞ Kℓ2 Ksqr Kgeo

nearest correlation matrix 3 Kmatrelent

nearest polynomial matrix 8 K⪰ KSOS KmatSOS

nearest PSD matrix 28 K⪰ KsPSD

nonparametric distribution 10 K≥ Ksqr Kgeo Klog Ksep

norm cone polynomial 10 Kℓ1SOS Kℓ2SOS

polynomial envelope 7 KSOS

polynomial minimization 15 K⪰ KSOS

polynomial norm 10 KSOS KmatSOS Kℓ1SOS Kℓ2SOS

portfolio 9 K≥ Kℓ∞ Kℓ2
region of attraction 6 K⪰ KSOS

relative entropy of entanglement 6 K⪰ Kmatrelent

robust geometric programming 6 K≥ Kℓ∞ Klog Krelent

semidefinite polynomial matrix 18 K⪰ Kℓ2 KmatSOS

shape constrained regression 11 K≥ K⪰ Kℓ∞ Kℓ2 KSOS KmatSOS

signomial minimization 13 K≥ Klog Krelent

sparse LMI 15 K⪰ KsPSD KLMI

sparse principal components 6 K≥ K⪰ Kℓ∞
stability number 6 K≥ K⪰ KDNN
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Figure 1.1: Histograms summarizing the benchmark instances in the primal conic form (1.7). Instance
size (log scale) is the sum of the primal variable, equality, and conic constraint dimensions. Exotic
cone count (log scale) is the number of exotic cones comprising the Cartesian product cone.
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1.9.2 Methodology

We can assess the practical performance of a stepping procedure on a given benchmark instance
according to several metrics: whether the correct conic certificate (satisfying our numerical tolerances,
discussed below) is found, and if so, the IPM iteration count and solve time. Across the benchmark
set, we compare performance between consecutive pairs of the five stepping procedures outlined in
Section 1.5.5.

basic. The basic prediction or centering stepping procedure without enhancements; described in
Section 1.5.5.1, this is similar to the method in Alfonso solver (Papp and Yıldız, 2021), which
is a practical implementation of the algorithm by Skajaa and Ye (2015) and Papp and Yıldız
(2017).

prox. The basic procedure modified to use a less restrictive central path proximity condition;
described in Section 1.5.5.2.

TOA. The prox procedure with the TOA enhancement to incorporate third order LHSCB informa-
tion; described in Section 1.5.5.3.

curve. The TOA procedure adapted for a single backtracking search on a curve instead of two
backtracking line searches; described in Section 1.5.5.4.

comb. The curve procedure modified to search along a curve of combinations of both the pre-
diction and centering directions and their corresponding adjustment directions; described in
Section 1.5.5.5.

We perform all instance generation, computational experiments, and results analysis using double
precision floating point format, with Ubuntu 21.04, Julia 1.7, and Hypatia 0.5.2 (with default options),
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on dedicated hardware with an AMD Ryzen 9 3950X 16-core processor (32 threads) and 128GB
of RAM. In Section 1.6, we outline the default procedures Hypatia uses for preprocessing, initial
point finding, and linear system solving for search directions. Simple scripts and instructions for
reproducing all results are available in Hypatia’s benchmarks/stepper folder. The benchmark script
runs all solves twice and uses results from the second run, to exclude Julia compilation overhead. A
CSV file containing raw results is available at the Hypatia wiki page.

When Hypatia converges for an instance, i.e. claims it has found a certificate of optimality, primal
infeasibility, or dual infeasibility, our scripts verify that this is the correct type of certificate for
that instance. For some instances, our scripts also check additional conditions, for example that the
objective value of an optimality certificate approximately equals the known true optimal value. We
do not set restrictive time or iteration limits. All failures to converge are caused by Hypatia ‘stalling’
during the stepping iterations: either the backtracking search cannot step a distance of at least the
minimal value in the α schedule, or across several prediction steps or combined directions steps,
Hypatia fails to make sufficient progress towards meeting the convergence conditions in Section 1.5.3.

Since some instances are more numerically challenging than others, we set the termination
tolerances (described in Section 1.5.3) separately for each instance. Let ϵ ≈ 2.22 × 10−16 be the
machine epsilon. For most instances, we use εf = εr = 10ϵ1/2 ≈ 1.49 × 10−7 for the feasibility
and relative gap tolerances, εi = εa = 10ϵ3/4 ≈ 1.82× 10−11 for the infeasibility and absolute gap
tolerances, and εp = 0.1ϵ3/4 ≈ 1.82 × 10−13 for the ill-posedness tolerance. For 50 instances that
are particularly numerically challenging, we loosen all of these tolerances by a factor of either 10
or 100, and for two challenging primal infeasible instances of the contraction analysis example, we
set εi = 10−9. This ensures that for every benchmark instance, at least one of the five stepping
procedures converges.

Following Fleming and Wallace (1986), we define the shifted geometric mean with shift s ≥ 0, for
d values v ∈ Rd>, as:

M(v, s) :=
∏
i∈JdK(vi + s)1/d − s. (1.52)

We always apply a shift of one for iteration counts. Since different stepping procedures converge
on different subsets of instances, in tables we show three types of shifted geometric means, each
computed from a vector of values (v in (1.52)) obtained using one of the following approaches.

every. Values for the 353 instances on which every stepping procedure converged.

this. Values for instances on which this stepping procedure (corresponding to the row of the table)
converged.

all. Values for all instances, but for any instances for which this stepping procedure (corresponding
to the row of the table) failed to converge, the value is replaced with two times the maximum
value for that instance across the stepping procedures that converged.

The shifted geometric means for the every approach are the most directly comparable because they
are computed on a fixed subset of instances, so we usually quote the every results in our discussion
in Section 1.9.3.
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Table 1.3 shows counts of converged instances and shifted geometric means of iteration count and
total solve time (in milliseconds), for the five stepping procedures. We use a shift of one millisecond
for the solve times in Table 1.3, as some instances solve very quickly (see Figure 1.2).

Table 1.4 shows shifted geometric means of the time (in milliseconds) Hypatia spends performing
each of the following key algorithmic components, for the five stepping procedures.

init. Performed once during an entire solve run, independently of the stepping iterations. Includes
rescaling and preprocessing of model data, initial interior point finding, and linear system
solver setup (see Section 1.6).

LHS. Performed at the start of each iteration. Includes updating data that the linear system solver
(which has a fixed LHS in each iteration) uses to efficiently compute at least one direction
(such as updating and factorizing the positive definite matrix in Section 1.6).

RHS. Performed between one and four times per iteration, depending on the stepping procedure.
Includes updating an RHS vector (see (1.28)) for the linear system for search directions. Note
that the TOO is only evaluated while computing the centering TOA RHS (1.32b) and the
prediction TOA RHS (1.42b).

direc. Performed for each RHS vector. Includes solving the linear system for a search direction (see
(1.28)) using the data computed during LHS and a single RHS vector computed during RHS,
and performing iterative refinement on the direction (see Section 1.6).

search. Performed once or twice per iteration (occasionally more if the step length is near zero),
depending on the stepping procedure. Includes searching using backtracking along a line or
curve to find an interior point satisfying the proximity conditions (see Section 1.7).

For some instances that solve extremely quickly, these subtimings sum to only around half of the
total solve time due to extraneous overhead. However for slower instances, these components account
for almost the entire solve time. In Table 1.4, total is the time over all iterations, and per iteration
is the average time per iteration (the arithmetic means are computed before the shifted geometric
mean). We use a shift of 0.1 milliseconds for the init and total subtimings (left columns) and a shift
of 0.01 milliseconds for the per iteration subtimings (right columns).

Finally, in Figures 1.4 and 1.7 we use performance profiles (Dolan and Moré, 2002; Gould and
Scott, 2016) to compare iteration counts and solve times between pairs of stepping procedures. These
should be interpreted as follows. The performance ratio for procedure i and instance j is the value
(iterations or solve time) attained by procedure i on instance j divided by the better/smaller value
attained by the two procedures on instance j. Hence a performance ratio is at least one, and smaller
values indicate better relative performance. For a point (x, y) on a performance profile curve for a
particular procedure, x is the logarithm (base 2) of performance ratio and y is the proportion of
instances for which the procedure attains that performance ratio or better/smaller. For example, a
curve crosses the vertical axis at the proportion of instances on which the corresponding procedure
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performed at least as well as the alternative procedure. We use the Julia package BenchmarkProfiles.jl
(Orban, 2019) to compute coordinates for the performance profile curves.

1.9.3 Results

Table 1.3 and Figure 1.7 demonstrate that each of the four cumulative stepping enhancements tends
to improve Hypatia’s iteration count and solve time. The enhancements do not have a significant
impact on the number of instances Hypatia converges on. However, if we had enforced time or
iteration limits, the enhancements would have also improved the number of instances solved. This is
clear from Figure 1.2, which shows the distributions of iteration counts and solve times for the basic
and comb stepping procedures.

We note that Figure 1.5 (left) supports the intuition that formulation size is strongly positively
correlated with solve time for comb. Furthermore, Figure 1.3 shows a positive correlation between
iteration count and instance barrier parameter ν, for both the basic and comb steppers. This is
expected for the basic stepper, as the theoretical worst-case iteration complexity for the SY algorithm
is proportional to

√
ν (Skajaa and Ye, 2015; Papp and Yıldız, 2017). However we note that on our

benchmark set, ν is also correlated with the instance size (particularly the cone dimension q) and
exotic cone count K, which may also affect iteration counts in practice.

Overall, Table 1.3 shows that on the subset of instances solved by every stepping procedure
(every), the enhancements together reduce the shifted geometric means of iterations and solve time
by more than 80% and 70% respectively (i.e. comparing comb to basic). Figure 1.4 shows that the
iteration count and solve time improve on nearly every instance solved by both basic and comb, and
the horizontal axis scale shows that the magnitude of these improvements is large on most instances.
Figure 1.6 shows that for instances that take more iterations or solve time, the enhancements tend
to yield a greater improvement in these measures. On every instance, the enhancements improve
the iteration count by at least 33%. The few instances for which solve time regressed with the
enhancements all solve relatively quickly.

Table 1.3: For each stepping procedure, the number of converged instances and shifted geometric
means of iterations and solve times (in milliseconds).

iterations solve time

step conv every this all every this all

basic 371 101.3 100.9 102.4 2131 2207 2282
prox 369 64.7 65.3 67.2 1317 1390 1451
TOA 374 35.0 35.3 36.1 1014 1063 1103
curve 372 29.7 30.0 31.0 742 781 820
comb 367 18.3 18.6 20.0 624 656 706

Each enhancement, by design, changes one modular component or aspect of the stepping procedure.
Below, we examine the impact of our algorithmic choices by discussing pairwise comparisons of
consecutive stepping procedures.

49



Figure 1.2: Overlayed histograms of iteration count (left, log scale) and solve time (right, log scale,
in seconds) for the basic and comb stepping procedures, excluding instances that fail to converge.
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Figure 1.3: Iteration count against instance barrier parameter for the basic (left) and comb (right)
stepping procedures, excluding instances that fail to converge.
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Figure 1.4: Performance profiles (see Section 1.9.2) of iteration count (left) and solve time (right) for
the four stepping enhancements overall.
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Figure 1.5: Solve time (log scale, in seconds) for the comb stepping procedure against (left) instance
size (log scale) and (right) the proportion of solve time spent in RHS, excluding instances that fail
to converge.
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Table 1.4: For each stepping procedure, the shifted geometric means of subtimings (in milliseconds)
for the key algorithmic components.

total per iteration

set step init LHS RHS direc search LHS RHS direc search

every

basic 29.5 741 1.45 75.6 125.6 7.73 0.02 0.81 1.29
prox 29.5 486 1.11 50.3 67.7 7.88 0.02 0.84 1.10
TOA 29.4 285 10.96 52.2 73.3 8.28 0.32 1.53 2.14
curve 29.6 244 9.24 44.6 33.4 8.33 0.32 1.53 1.15
comb 29.3 160 10.51 57.6 35.2 8.74 0.58 3.14 1.94

this

basic 30.3 784 1.48 78.8 131.8 8.20 0.02 0.85 1.36
prox 30.1 519 1.12 53.4 72.6 8.35 0.02 0.88 1.16
TOA 30.2 302 11.97 55.4 78.3 8.70 0.35 1.61 2.26
curve 30.5 261 9.99 47.3 35.1 8.80 0.34 1.60 1.20
comb 30.5 171 11.03 60.7 36.4 9.23 0.60 3.27 1.98

all

basic 31.1 814 1.62 82.7 134.7 8.52 0.02 0.91 1.40
prox 31.3 549 1.25 56.2 75.1 8.74 0.02 0.94 1.20
TOA 31.2 317 12.23 57.5 79.7 9.04 0.36 1.66 2.28
curve 31.4 276 10.40 49.6 37.3 9.17 0.36 1.68 1.26
comb 31.4 188 11.88 64.2 40.0 9.66 0.63 3.35 2.10

Figure 1.6: Relative improvement, from basic to comb, in iteration count (left) or solve time (right)
against iteration count or solve time (in seconds) respectively for comb, over the 356 instances on
which both basic and comb converge.
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Figure 1.7: Performance profiles (see Section 1.9.2) of iteration count (left column) and solve time
(right column) for the four stepping enhancements (rows).
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1.9.3.1 Less restrictive proximity

We compare basic and prox to evaluate the central path proximity enhancement introduced in
Section 1.5.5.2. Figure 1.7 (first row) shows that the iteration count and solve time improve for
nearly all instances. From Table 1.3, the shifted geometric means of iteration count and solve time
improve by over 35%.

The similarity between the iteration count and solve time performance profiles in Figure 1.7 and
also between the per iteration subtimings in Table 1.4 suggests that the solve time improvement is
driven mainly by the reduction in iteration count. The per iteration search time decreases slightly,
since on average fewer backtracking search steps are needed per iteration for prox (because it tends
to step further in the prediction directions, as evidenced by the smaller iteration counts). These
results suggest that the central path proximity restrictions in the algorithms by Skajaa and Ye (2015)
and Papp and Yıldız (2021) are too conservative from the perspective of practical performance, and
that we need not restrict iterates to a very small neighborhood of the central path in order to obtain
high quality prediction directions in practice.

1.9.3.2 Third order adjustments

We compare prox and TOA to evaluate the TOA enhancement introduced in Section 1.5.5.3.
Figure 1.7 (second row) shows that the iteration count improves for all instances and by a fairly
consistent magnitude, and the solve time improves for nearly 80% of instances. From Table 1.3,
the shifted geometric means of iteration count and solve time improve by over 45% and over 20%
respectively.

Since TOA computes an additional direction and performs an additional backtracking search
every iteration, the per iteration times for direc and search in Table 1.4 nearly double. The RHS
time increases substantially, because the TOO is evaluated for the second RHS vector (used to
compute the TOA direction), but RHS is still much faster than the other components. Per iteration,
direc and search also remain fast compared to LHS. We see an overall solve time improvement
because the reduction in iteration count usually outweighs the additional cost at each iteration. This
suggests that the TOO is generally relatively cheap to compute, and our TOA approach very reliably
improves the quality of the search directions.

1.9.3.3 Curve search

We compare TOA and curve to evaluate the curve search enhancement introduced in Section 1.5.5.4.
Figure 1.7 (third row) shows that the iteration count and solve time improve for most instances, with
larger and more consistent improvements for the solve time. From Table 1.3, the shifted geometric
means of iteration count and solve time improve by over 15% and over 25% respectively.

Since curve performs one backtracking search along a curve instead of the two backtracking
line searches needed by TOA, the per iteration search time in Table 1.4 nearly halves. The other
subtimings are unaffected, so curve improves the speed of each iteration. The improvement in
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iteration count may stem from the more dynamic nature of the curve search compared to TOA’s
approach of computing a fixed combination of the unadjusted and TOA directions as a function of
the step distance in the unadjusted direction.

1.9.3.4 Combined directions

Finally, we compare curve and comb to evaluate the combined directions enhancement introduced
in Section 1.5.5.5. Figure 1.7 (fourth row) shows that the iteration count and solve time improve
on around 90% and 70% of instances respectively. From Table 1.3, the shifted geometric means of
iteration count and solve time improve by nearly 40% and over 15% respectively.

Since comb computes four directions per iteration (unadjusted and TOA directions for both
prediction and centering) instead of two, the per iteration times for RHS and direc approximately
double in Table 1.4. The search time increases because on average more backtracking curve search
steps are needed per iteration (for curve, the centering phase typically does not require multiple
backtracking steps). Per iteration, LHS remains slower than the other components combined. Hence
combining the prediction and centering phases generally improves practical performance, and should
be more helpful when LHS is particularly expensive (such as when n − p, the side dimension of
the PSD matrix we factorize during LHS, is large; see Section 1.6). Furthermore, Figure 1.5 (right)
shows that for most instances, RHS accounts for a small proportion of the overall solve time for
comb, especially for instances that take longer to solve. This suggests that the TOO is rarely a
bottleneck for our comb stepping procedure.
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Chapter 2

Solving natural conic formulations

Abstract

Many convex optimization problems can be represented through conic extended formulations
(EFs) using only the small number of standard cones recognized by advanced conic solvers such
as MOSEK 9. However, EFs are often significantly larger and more complex than equivalent
conic natural formulations (NFs) represented using exotic cones supported by Hypatia. For
three broad classes of cones in Hypatia, we describe general techniques for building EFs and
compare computational properties of the NFs and EFs. We formulate seven applied problems
over these cones, noting that the EFs are necessarily larger, more complex, and less efficient
to build. Our computational experiments demonstrate the advantages, especially in terms of
solve time and memory usage, of solving the NFs with Hypatia compared to solving the EFs
with either Hypatia or MOSEK 9. A key reason for Hypatia’s success is our implementation
of efficient and numerically stable cone oracles. We derive oracles for the first two classes - the
positive semidefinite slice cones and the infinity/spectral norm cones - in this chapter, and for
the third class - the spectral function cones - in Chapter 3. A surprising and important result is
an analytic formula for the inverse Hessian operator of the spectral norm cone barrier function,
which avoids the need to form and factorize an explicit Hessian matrix.

2.1 Introduction

Historically, IPM solvers were based on efficient algorithms specialized for symmetric cones, in
particular, the nonnegative, (rotated) second order, and positive semidefinite (PSD) cones. However,
many useful nonsymmetric conic constraints (such as u ≤ log(w), representable with an exponential
cone) are not exactly representable with symmetric cones. Skajaa and Ye (2015) (henceforth referred
to as SY ) introduced a nonsymmetric conic interior point method (IPM) that requires just a few
oracles for the primal cone only. In Chapter 1, we describe an IPM that enhances the practical
performance of SY. Our algorithm recognizes any exotic cone, which we define as a proper cone for
which we can implement a small set of easily computable (i.e. fast, numerically stable, analytic)
oracles for a logarithmically homogeneous self-concordant barrier (LHSCB) function for the cone or
for its dual cone (not both). We implement this algorithm in our IPM solver, Hypatia, introduced in
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Section 1.2.

2.1.1 Natural and extended formulations

Although advanced conic solvers such as MOSEK 9 currently recognize at most only a handful of
standard cones (the common symmetric cones and the three-dimensional nonsymmetric exponential
and power cones), these cones are sufficient for representing many problems of interest (Lubin,
Yamangil, et al., 2016; MOSEK ApS, 2020a). Modeling tools such as disciplined convex programming
(DCP) packages (see CVX (Grant and Boyd, 2014), CVXPY (Diamond and Boyd, 2016), and
Convex.jl (Udell et al., 2014)) and MathOptInterface’s bridges (Benoit Legat et al., 2020) are
designed to facilitate transformations of convex problems into conic problems with standard cones.
However, a representation limited to the standard cones is often not the most natural or efficient
conic formulation. The process of transforming a general conic problem into a conic extended
formulation (EF) that uses only standard cones often requires introducing many artificial variables,
linear equalities, and/or higher-dimensional conic constraints.

If conic solvers could recognize the much larger class of exotic cones, they could directly solve
simpler, smaller conic natural formulations (NFs). NFs have several practical advantages over EFs.
NFs tend to be easier to model, and converting conic certificates from the space of the EF back
into the more meaningful NF space can be complicated. Furthermore, the convergence conditions
used by IPMs can provide numerical guarantees about conic certificates, but if EF certificates are
converted to NF space, the NF certificates might lack such guarantees. Perhaps more importantly,
by increasing the size and complexity of problem data, EFs can increase the computational cost of,
for example, preprocessing and linear system solving at each iteration. This raises the question of
whether it can be more efficient to solve NFs using a generic conic solver than to solve equivalent
EFs using an advanced conic solver specialized for standard cones.

In the particular context of polynomial weighted sum-of-squares (SOS) optimization, Papp and
Yıldız (2019) illustrate the advantages of solving SOS cone formulations instead of equivalent but
much larger semidefinite programming EFs. The authors describe easily computable LHSCB oracles
for dual SOS cones, noting that easily computable oracles are not known for primal SOS cones. They
show that their SOS NF-based approach has lower theoretical time and space complexity overall
compared to a standard EF-based semidefinite programming method. After implementing SY in
the MATLAB solver Alfonso (Papp and Yıldız, 2017; Papp and Yıldız, 2021), the authors observe
improved solve times and scaleability from solving the NFs with Alfonso compared to solving the
EFs with MOSEK.

To broaden the computational argument for NFs, in Section 2.2 we define a variety of exotic cone
types in Hypatia. We group these cones into three classes: the PSD slice cones in Section 2.2.1, the
infinity/spectral norm cones in Section 2.2.2, and the spectral function cones in Section 2.2.3. We
describe general techniques for constructing equivalent EFs of NF constraints involving these cones,
and we analyze how these EF techniques necessarily increase formulation size, which impacts the
dimensions of the linear systems that must be solved by an IPM (see Section 1.6). We also observe
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that the EFs are often associated with larger values of the LHSCB parameter ν. This parameter
impacts the number of iterations O(

√
ν log(1/ε)) needed in the worst case by an idealized IPM such

as SY to obtain a solution within ε tolerance (Nesterov, Todd, and Ye, 1997), though since most
performance-oriented conic solvers do not directly implement idealized IPMs, the practical impact of
the parameter ν is unclear.

2.1.2 Examples and computational testing

In Section 2.3, we present a series of example problems from applications such as matrix completion,
experiment design, and smooth density estimation. For these examples, we describe simple NFs
using the exotic cones we define in Section 2.2. Some of these NFs are new and may be valuable
to try in real-world applications. We randomly generate NF instances of a wide variety of sizes,
construct equivalent EFs using the general EF techniques in Section 2.2, and observe that the EFs
are significantly larger. For example, in our density estimation example problem in Section 2.3.6,
these dimensions are typically orders of magnitude larger for the EFs than for the NFs.

Our computational experiments demonstrate significant improvements in solve time and memory
overhead from solving the NFs with Hypatia compared to solving the EFs with Hypatia or MOSEK
9. Our experience also suggests that since EFs are often larger and more complex than NFs, they can
be less convenient for the modeler, and noticeably slower and more memory-intensive to construct
using JuMP or Hypatia’s native interface. For many instances, we could build the NF efficiently, but
we hit time or memory limits while constructing the EF. We discuss these results and our conclusions
further in Section 2.4. In Section 3.8, we present more applied examples over the spectral function
cones and our computational experiments lead to the same conclusions.

2.1.3 Efficient oracle procedures

In the final two sections of this chapter, we discuss oracles needed by Hypatia’s IPM (see Section 1.3)
for two of the three broad cone classes. The third class - the spectral function cones - are addressed
in detail in Chapter 3, where we also develop new LHSCBs with near-optimal barrier parameters.

In Section 2.5, we define LHSCBs and derive efficient, numerically stable procedures for gradient,
Hessian product, and third order directional derivative oracles for the PSD slice cones, which can be
characterized as intersections of slices of the PSD cone. We consider the linear matrix inequality
(LMI) cone KLMI in Section 2.5.1 and the dual SOS and SOS matrix cones K∗

SOS and K∗
matSOS

in Section 2.5.2. In Section 2.5.3, we consider the sparse PSD cone KsPSD, obtaining the third
order oracle by differentiating a Hessian product procedure described by M. S. Andersen, Dahl, and
Vandenberghe (2013).

In Section 2.6, we discuss the infinity/spectral norm cones, which are epigraphs of real/complex
vector ℓ∞ norms or matrix spectral norms (for symmetric/Hermitian or real/complex rectangular
matrices). Our LHSCBs and oracles for this class are all specializations of the most general case, the
rectangular matrix spectral norm cone Kℓspec , so we focus on this case. We use a thin singular value
decomposition of the matrix to check feasibility and efficiently compute gradients, Hessian products,
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and third order directional derivatives. Importantly, we also derive a closed form expression for
the inverse Hessian product, which allows Hypatia to avoid ever forming or factorizing an explicit
Hessian matrix. This formula improves the speed, memory requirements, and numerical performance
of inverse Hessian products, as we demonstrate in comparisons against a naive explicit Hessian
factorization approach.

2.2 Cones and extended formulations

Let K ⊂ Rq be a proper cone, i.e. a closed, convex, pointed, and full-dimensional conic set. We call
K a primitive (or irreducible) cone if it cannot be written as a Cartesian product of two or more
lower-dimensional cones. The dual cone K∗ is a primitive proper cone if and only if K is a primitive
proper cone.

As we discuss in Section 1.3, Hypatia’s generic cone interface allows defining any primitive proper
cone K by specifying a small list of oracles: an initial interior point t ∈ int(K), a feasibility test
for int(K), and gradient, Hessian, and third order directional derivative evaluations for an LHSCB
f for K. The cone interface also allows optional specification of other oracles that can improve
performance, such as dual cone feasibility checks and inverse Hessian product oracles. Once K is
defined through Hypatia’s cone interface, both K and K∗ may be used in any combination with
other recognized cones to construct the Cartesian product cone in the primal conic form (2.1) below.

Hypatia’s primal conic form over variable x ∈ Rn is:

infx c′x : (2.1a)

b−Ax = 0, (2.1b)

h−Gx ∈ K, (2.1c)

where c ∈ Rn, b ∈ Rp, and h ∈ Rq are vectors, A : Rn → Rp and G : Rn → Rq are linear maps, and
K ⊂ Rq is a Cartesian product K = K1 × · · · × KK of primitive proper cones. Henceforth we use
n, p, q to denote the variable, equality, and conic constraint dimensions of a conic problem in this
form.

As we discuss in Section 2.1.1, advanced conic solvers such as MOSEK 9 currently only recognize
a handful of standard cones, which we now define. The nonnegative cone is K≥ := R≥. The Euclidean
norm cone (or second order cone) Kℓ2 , Euclidean norm square cone (or rotated second order cone)
Ksqr, and vectorized PSD cone K⪰ are:

Kℓ2 := {(u,w) ∈ R≥ × Rd : u ≥ ∥w∥}, (2.2a)

Ksqr := {(u, v, w) ∈ R≥ × R≥ × Rd : 2uv ≥ ∥w∥2}, (2.2b)

K⪰ :=
{
w ∈ Rsd(d) : mat(w) ∈ Sd⪰

}
. (2.2c)

These cones are symmetric (self-dual), i.e. K = K∗. The exponential cone in R3 is a special case
of our logarithm cone Klog defined in Section 2.2.3.2 (let d = 1 in (2.19)). The power cone in
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R3 (MOSEK ApS, 2020a, Section 4.1) is a special case of Hypatia’s generalized power cone Kgpow

(defined in Section 1.8); we omit the definition here because we do not need power cones for the EFs
in this chapter. The three-dimensional exponential and power cones are nonsymmetric.

DCP modeling tools and MathOptInterface’s bridges (Benoit Legat et al., 2020, Section 5)
automatically construct EFs to enable access to standard conic solvers. In Sections 2.2.1 to 2.2.3, we
define three broad classes of cones supported by Hypatia and describe techniques for constructing
EFs for conic problems over these cones. These techniques follow best practices from DCP software
and descriptions such as Ben-Tal and Nemirovski (2001, Chapter 4). For convenience, in this section
we refer to a particular exotic cone constraint as an NF, and an equivalent reformulation of such
a constraint in terms of only standard cones as an EF. In general, an NF constraint has the form
h−Gx ∈ K, but for simplicity in this section we write s ∈ K, since s = h−Gx can be substituted
into the EF description.

An EF may use auxiliary variables, linear equalities, and/or conic constraints, which affect the
dimensions n, p, and q (respectively) of the primal conic form (2.1). In Table 2.1, we compare the
dimensions and LHSCB parameters (ν) associated with the equivalent NFs and EFs in this section.
Clearly, the EFs are associated with larger dimensions, which may impact the performance of IPMs,
for example by increasing the size of linear systems that must be solved at each iteration. For
some EFs with auxiliary variables and equalities, it is possible to perform eliminations to reduce
certain dimensions, but this can impact the sparsity of problem data (note that for our experiments,
Hypatia and MOSEK both perform preprocessing). Furthermore, the barrier parameters of the EFs
are at least as large as those of the NFs; recall from Section 2.1.1 that ν impacts the worst-case
number of iterations needed for idealized IPMs to converge. We contributed the EFs described in
Sections 2.2.2.1, 2.2.2.2 and 2.2.3.1 to MathOptInterface’s bridges.

2.2.1 Positive semidefinite slice cones

For each cone K in this class, either K or K∗ has an obvious representation as an intersection of
slices of the PSD cone, i.e. there exists an EF in terms of K⪰ cones without auxiliary variables. We
only describe a handful of Hypatia’s PSD slice cones in this section. We summarize properties of the
NFs and EFs in Table 2.1 (top). In Section 2.5, we define LHSCBs for this class and describe oracle
procedures.

2.2.1.1 Hermitian positive semidefinite cone

The self-dual vectorized Hermitian PSD cone Kc⪰ is closely related to the self-dual vectorized real
symmetric PSD cone K⪰:

Kc⪰ :=
{
w ∈ Rd

2
: mat(w) ∈ Hd

⪰
}
. (2.3)

For side dimension d, this cone is representable with a standard K⪰ constraint of side dimension 2d,
since:

W ∈ Hd
⪰ ⇔

[
ℜ(W ) −ℑ(W )

ℑ(W ) ℜ(W )

]
∈ S2d⪰ . (2.4)
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Table 2.1: Properties of NFs and EFs for the PSD slice cones (top, see Section 2.2.1), infinity/spectral
norm cones (middle, see Section 2.2.2), and spectral function cones (bottom, see Section 2.2.3). q
and ν are the dimension and LHSCB parameter for the NF cone, and q̄ and ν̄ are the corresponding
values for the EF Cartesian product cone. n̄ and p̄ are the EF auxiliary variable and equality
dimensions. Recall sd(d) := d(d+ 1)/2.

NF EF

cone q ν q̄ ν̄ n̄ p̄

Kc⪰ d2 d sd(2d) 2d

KsPSD d s sd(s) ν

K∗
sPSD –"– –"– –"– ν sd(s)− d
K∗

SOS d
∑

lsl
∑

l sd(sl) ν

KSOS –"– –"– –"– ν q̄ d

K∗
matSOS sd(t)d t

∑
lsl

∑
l sd(tsl) ν

KmatSOS –"– –"– –"– ν q̄ q

Kℓ∞ 1 + d 1 + d 2d 2d

K∗
ℓ∞

–"– –"– 1 + 2d 1 + 2d 2d d

Kℓsspec 1 + sd(d) 1 + d 2 sd(d) 2d

K∗
ℓsspec

–"– –"– 1 + 2 sd(d) 1 + 2d 2 sd(d) sd(d)

Kℓspec 1 + ds 1 + d sd(d+ s) d+ s

K∗
ℓspec

–"– –"– 1 + sd(d+ s) 1 + d+ s sd(d) + sd(s)

Kgeo 1 + d 1 + d 2 + 3d 2 + 3d 1 + d

Krtdet 1 + sd(d) –"– 2 + 3d+ sd(2d) 2 + 5d 1 + d+ sd(d)

Klog 2 + d 2 + d 1 + 3d 1 + 3d d

Klogdet 2 + sd(d) –"– 1 + 3d+ sd(2d) 1 + 5d 1 + d+ sd(d)

Ksep(R) 2 + d –"– 1 + 3d 1 + 3d d

Ksep(S) 2 + sd(d) –"– −1 + 4d+ d3 −1 + 3d+ 2d2 −1 + (5d+ d3)/2 1

Ksep(H) 2 + d2 –"– −1 + 3d− 2d2 + 4d3 −1 + d+ 4d2 −1 + 3d− d2 + d3 1
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2.2.1.2 Sparse positive semidefinite cone

Suppose S = ((il, jl))l∈JdK is a collection of row-column index pairs defining the sparsity pattern
(including all diagonal elements) of the lower triangle of a symmetric matrix of side dimension s.
Unlike prior work such as Burer (2003) and M. S. Andersen, Dahl, and Vandenberghe (2013), we do
not require that S be a chordal sparsity pattern, hence the cone dimension d = |S| can be as small
as possible. Note s ≤ d ≤ sd(s). Let matS : Rd → Ss be the linear operator satisfying:

(matS(w))i,j =


wl if i = il = j = jl,

wl/
√
2 if i = il ̸= j = jl,

0 otherwise,

∀i, j ∈ JsK : i ≥ j. (2.5)

We define the sparse PSD cone and its dual cone of PSD-completable matrices as:

KsPSD(S) :=
{
w ∈ Rd : matS(w) ∈ Ss⪰

}
, (2.6a)

K∗
sPSD(S) :=

{
w ∈ Rd : ∃θ ∈ Rsd(s)−d,matS(w) + matS̄(θ) ∈ Ss⪰

}
, (2.6b)

where S̄ is the lower triangle inverse sparsity pattern of S (with |S̄| = sd(s)− d).
Note Hypatia also supports the complex Hermitian sparse PSD cone (and its dual cone), but since

this a simple generalization of KsPSD, we do not define it here. The corresponding EFs generalize
(2.6) to the Hermitian case and then apply the Kc⪰ EF (2.4).

2.2.1.3 Polynomial weighted sum-of-squares cones

Given a collection of matrices Pl ∈ Rd×sl , ∀l ∈ JrK from basis polynomials evaluated at d interpolation
points as in Papp and Yıldız (2019), the interpolant basis polynomial weighted sum-of-squares (SOS)
cone and its dual are:

KSOS(P ) :=
{
w ∈ Rd : ∃Θl ∈ Ssl⪰, ∀l ∈ JrK, w =

∑
l∈JrK diag(PlΘlP

′
l )
}
, (2.7a)

K∗
SOS(P ) :=

{
w ∈ Rd : P ′

l Diag(w)Pl ∈ Ssl⪰,∀l ∈ JrK
}
. (2.7b)

SOS cones are useful for polynomial and moment modeling; for example, a point in KSOS(P )

corresponds to a polynomial that is pointwise nonnegative on a semialgebraic domain defined by P .
Note Hypatia also defines a new real-valued complex polynomial SOS (or Hermitian SOS) cone with
complex Pl matrices.

Given a side dimension t of a symmetric matrix of polynomials (for simplicity, all using the same
interpolant basis), and Pl ∈ Rd×sl ,∀l ∈ JrK defined as for KSOS(P ) in Section 2.2.1.3, the SOS matrix
cone and its dual are:

KmatSOS(P ) :=

{
w ∈ Rsd(t)d : ∃Θl ∈ Sslt⪰ ,∀l ∈ JrK,

Wi,j,: =
∑

l∈JrK diag(Pl(Θl)i,jP
′
l ),∀i, j ∈ JtK : i ≥ j

}
, (2.8a)

K∗
matSOS(P ) :=

{
w ∈ Rsd(t)d : [P ′

l Diag(Wi,j,:)Pl]i,j∈JtK ∈ Sslt⪰ ,∀l ∈ JrK
}
, (2.8b)
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where Wi,j,: ∈ Rd is the contiguous slice of w (scaled to account for symmetry) corresponding to the
interpolant basis values in the (i, j)th position of the symmetric matrix, (S)i,j is the (i, j)th block in
a symmetric matrix S with square blocks of equal dimensions, and [g(Wi,j,:)]i,j∈JtK is the symmetric
matrix with square matrix g(Wi,j,:) in the (i, j)th block. A point in KmatSOS(P ) corresponds to a
polynomial matrix that is pointwise PSD on a semialgebraic domain defined by P . See Kapelevich,
Coey, and Vielma (2021) for more details.

Our examples in Sections 2.3.5 to 2.3.7 use the EFs implicit in the definitions of K∗
SOS, KSOS,

and KmatSOS in (2.7a), (2.7b) and (2.8a). These EFs each use r K⪰ cones.
Papp and Yıldız (2019) describe an LHSCB with analytic oracles for K∗

SOS(P ), but they state that
one is not known for KSOS(P ). We are not aware of an LHSCB with analytic oracles for KmatSOS(P ) -
indeed, for t = 1, KmatSOS(P ) reduces to KSOS(P ). Noting that (2.8b) implicitly constrains a linear
function of w to a Cartesian product of PSD cones, we can use Nesterov and Nemirovski (1994,
Propositions 5.1.1 and 5.1.3) to derive an LHSCB for K∗

matSOS(P ); see Section 2.5.2 and Kapelevich,
Coey, and Vielma (2021) for details. For t = 1, this new LHSCB reduces to that of KSOS(P ).

2.2.2 Infinity/spectral norm cones

For each cone K in this class, either K or K∗ is an epigraph of the vector ℓ∞ norm or matrix spectral
norm. Although these cones are technically PSD slice cones, the structures and LHSCBs for these
cones are so closely related that we treat this class separately. We summarize properties of the NFs
and EFs in Table 2.1 (middle). In Section 2.6, we define LHSCBs and derive new oracle procedures.

2.2.2.1 Vector infinity norm cones

The ℓ∞ norm cone is the epigraph of ℓ∞. Its dual cone is the epigraph of the ℓ1 norm, which is the
dual norm of ℓ∞. For the real vector domain, these cones are defined as:

Kℓ∞ := {(u,w) ∈ R≥ × Rd : u ≥ ∥w∥∞}, (2.9a)

K∗
ℓ∞

:= {(u,w) ∈ R≥ × Rd : u ≥ ∥w∥1}. (2.9b)

For Kℓ∞ , we use the LHSCB from Güler (1996, Section 7.5). We are not aware of an LHSCB for
K∗
ℓ∞

with analytic oracles.
Our examples in Sections 2.3.1 and 2.3.4 use the following linear (LP) EFs (right):

(u,w) ∈ Kℓ∞ ⊂ R1+d ⇔ (ue− w, ue+ w) ∈ R2d
≥ , (2.10a)

(u,w) ∈ K∗
ℓ∞ ⊂ R1+d ⇔ ∃θ ∈ Rd≥, ∃λ ∈ Rd≥, w = θ − λ, u− e′(θ + λ) ∈ R≥. (2.10b)

For the complex vector domain case, these cones are nonpolyhedral. We can write EFs in terms
of auxiliary variables and d three-dimensional Kℓ2 cones, which allow us to represent absolute values
of complex numbers.
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2.2.2.2 Matrix spectral norm cones

The spectral norm cone is the epigraph of the matrix spectral norm (the largest singular value). Its
dual cone is the epigraph of the matrix nuclear norm (the sum of singular values), which is the dual
norm of the spectral norm. These cones are analogous to Kℓ∞ and K∗

ℓ∞
because the spectral norm

is the ℓ∞ norm of the singular values and the nuclear norm is the ℓ1 norm of the singular values.
Hypatia supports these cones for four types of matrix domains: real symmetric, complex Hermitian,
real rectangular, and complex rectangular matrices. Note for symmetric/Hermitian matrices, the
singular values are the absolute values of the eigenvalues. For a matrix W , let σi(W ) ≥ 0 be the ith
largest singular value of W .

First we consider the real symmetric matrix case. For side dimension d, these cones are:

Kℓsspec := {(u,w) ∈ R≥ × Rsd(d) : u ≥ σ1(W )}, (2.11a)

K∗
ℓsspec

:=
{
(u,w) ∈ R≥ × Rsd(d) : u ≥

∑
i∈JdKσi(W )

}
, (2.11b)

where W := mat(w) ∈ Sd.
The associated EFs compute the ℓ∞ or ℓ1 norm of the eigenvalues of W :

(u,w) ∈ Kℓsspec ⊂ R1+sd(d) ⇔ uI(d)−W ∈ Sd⪰, uI(d) +W ∈ Sd⪰, (2.12a)

(u,w) ∈ K∗
ℓsspec ⊂ R1+sd(d) ⇔

∃θ ∈ Rsd(d),∃λ ∈ Rsd(d),W = Θ− Λ,

Θ ∈ Sd⪰,Λ ∈ Sd⪰, u− tr(Θ)− tr(Λ) ∈ R≥,
(2.12b)

where Θ := mat(θ) ∈ Sd,Λ := mat(λ) ∈ Sd.
Now we consider the real rectangular/nonsymmetric matrix case. Suppose W has d rows and s

columns, and d ≤ s; note this is without loss of generality, since W and W ′ have the same singular
values. The spectral and nuclear norm cones are:

Kℓspec(d,s) := {(u,w) ∈ R≥ × Rds : u ≥ σ1(W )}, (2.13a)

K∗
ℓspec(d,s)

:=
{
(u,w) ∈ R≥ × Rds : u ≥

∑
i∈JdKσi(W )

}
, (2.13b)

where W := matd,s(w) ∈ Rd×s.
The example in Section 2.3.2 uses the EF for Kℓspec from Ben-Tal and Nemirovski (2001, Section

4.2), and Section 2.3.3 uses the EF for K∗
ℓspec

from Recht, Fazel, and Parrilo (2010):

(u,w) ∈ Kℓspec(d,s) ⊂ R1+ds ⇔

[
uI(d) W

W ′ uI(s)

]
∈ Sd+s⪰ , (2.14a)

(u,w) ∈ K∗
ℓspec(d,s)

⊂ R1+ds ⇔
∃θ ∈ Rsd(d), ∃λ ∈ Rsd(s),

[
Θ W

W ′ Λ

]
∈ Sd+s⪰ ,

u− (tr(Θ) + tr(Λ))/2 ∈ R≥,

(2.14b)

where Θ := mat(θ) ∈ Sr,Λ := mat(λ) ∈ Ss.
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For the Hermitian/complex matrix domains, the reformulations (2.12) and (2.14) have straight-
forward generalizations in terms of Hermitian PSD cones. To obtain K⪰ EFs, we apply the Kc⪰ EF
(2.4).

For Kℓspec we use the LHSCB from Nesterov and Nemirovski (1994), and since Kℓsspec is a
symmetric matrix slice of Kℓspec , we use the same LHSCB for Kℓsspec . We are not aware of an LHSCB
with analytic oracles for K∗

ℓspec
or K∗

ℓsspec
.

2.2.3 Spectral function cones

Cones in this class are characterized as epigraphs or hypographs of homogeneous spectral functions
or perspective functions of spectral functions. These spectral functions are defined on the real vector
domain and the symmetric/Hermitian matrix domains. Spectral functions and associated cones
are the topic of Chapter 3, where we also develop new LHSCBs with near-optimal parameters and
efficient oracles for Hypatia. We summarize properties of the NFs and EFs in Table 2.1 (bottom).

2.2.3.1 Geometric mean and root-determinant cones

The geometric mean cone is the hypograph of the geometric mean function on the nonnegative real
vectors:

Kgeo :=
{
(u,w) ∈ R× Rd≥ : u ≤

∏
i∈JdKw

1/d
i

}
. (2.15)

Analogously, the root-determinant cone is the hypograph of the root-determinant function (or the
geometric mean of the eigenvalues) on the PSD matrices:

Krtdet :=
{
(u,w) ∈ R1+sd(d) :W ∈ Sd⪰, u ≤ (det(W ))1/d

}
, (2.16)

where W := mat(w). Hypatia also recognizes a complex Hermitian root-determinant cone. We do
not define the dual cones here, as they do not provide additional modeling power. We describe a
Jordan algebra domain generalization of Kgeo and Krtdet in Section 3.7 (including the dual cone
definition).

The example in Section 2.3.2 uses an EF for Kgeo, and the root-determinant variant of the
example in Section 2.3.4 uses an EF for Kgeo indirectly through a Krtdet EF. We are aware of three
EFs for Kgeo: a second order cone EF (EF-sec) from Ben-Tal and Nemirovski (2001, Section 3.3.1),
a power cone EF (EF-pow) from MOSEK ApS (2020a), and an exponential cone EF (EF-exp). We
contributed EF-exp to MathOptInterface as a combination of two bridges (geometric mean cone to
relative entropy cone to exponential cones):

(u,w) ∈ Kgeo ⊂ R1+d ⇔
∃ρ ∈ R≥,∃θ ∈ Rd, e′θ ∈ R≥,

(θi, u+ ρ, wi) ∈ Klog, ∀i ∈ JdK.
(2.17)

EF-pow is not currently available through MathOptInterface bridges, and it has a very similar size
and structure to EF-exp, so we do not describe or test it. A bridge exists for EF-sec; this EF uses
multiple levels of variables and three-dimensional second order cone constraints and is complicated
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to describe, so we refer the reader to Ben-Tal and Nemirovski (2001, Section 3.3.1). In our empirical
comparisons in Sections 2.3.2 and 2.3.4, EF-sec typically has larger variable and conic constraint
dimensions but smaller barrier parameter than EF-exp.

The example in Section 2.3.4 uses the EF from Ben-Tal and Nemirovski (2001, Section 4.2) for
Krtdet:

(u,w) ∈ Krtdet ⊂ R1+sd(d) ⇔
∃θ ∈ Rsd(d), (u,diag(Θ)) ∈ Kgeo,[

W Θ

Θ′ Diag(diag(Θ))

]
∈ S2d⪰ ,

(2.18)

where Θ := mat(θ) ∈ Sd, and the Kgeo constraint is itself replaced with one of the geometric mean
cone EFs described above. For the Hermitian domain case, we generalize (2.18) and apply the Kc⪰
EF (2.4).

2.2.3.2 Logarithm and log-determinant cones

The logarithm cone is the hypograph of the perspective function of a sum of natural logarithms on
the positive real vectors:

Klog := cl
{
(u, v, w) ∈ R2+d : v > 0, w > 0, u ≤

∑
i∈JdKv log(wi/v)

}
. (2.19)

Analogously, the log-determinant cone is the hypograph of the perspective function of the log-
determinant function on the positive definite matrices:

Klogdet := cl
{
(u, v, w) ∈ R2+sd(d) : v > 0,W ∈ Sd≻, u ≤ v logdet(W/v)

}
, (2.20)

where W := mat(w). Hypatia also recognizes a complex Hermitian domain log-determinant cone.
We do not define the dual cones here, as they do not provide additional modeling power.

The example in Section 2.3.6 uses the exponential cone EF (when d > 1) for Klog:

(u, v, w) ∈ Klog ⊂ R2+d ⇔ ∃θ ∈ Rd, e′θ − u ∈ R≥, (θi, 1, wi) ∈ Klog,∀i ∈ JdK. (2.21)

The example in Section 2.3.4 uses the EF (when d > 1) for Klogdet (adapted from (2.18)):

(u, v, w) ∈ Klogdet ⊂ R2+sd(d) ⇔
∃θ ∈ Rsd(d), (u, v,diag(Θ)) ∈ Klog,[

W Θ

Θ′ Diag(diag(Θ))

]
∈ S2d⪰ ,

(2.22)

where Θ := mat(θ) ∈ Sd, and the Klog constraint is itself replaced with the Klog EF (2.21). For the
Hermitian domain case, we generalize (2.22) and apply the Kc⪰ EF (2.4).
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2.2.3.3 Separable spectral function cones

The separable spectral function cone is parametrized by a cone of squares Q of a Jordan algebra
(see Section 3.2) and a convex separable spectral function φ : int(Q)→ R (see Section 3.3.2):

Ksep := cl{(u, v, w) ∈ R2+dim(Q) : v > 0,W ∈ int(Q), u ≥ vφ(w/v)}, (2.23)

In the special case where φ has the matrix monotone derivative (MMD) property, we propose an
LHSCB for Ksep with near optimal parameter in Proposition 3.6.1. We discuss MMD spectral
function cones and their dual cones in depth in Section 3.6. In Hypatia, we predefine several common
MMD functions for φ, including the negative entropy, negative squareroot, and power in (1, 2]; see
Table 3.1 for a complete list.

For the real vector domain with Q = Rd≥, dim(Q) = d and φ(w) =
∑

i∈JdKφ(wi). The EF is
straightforward if there exists a standard conic reformulation of a three-dimensional Ksep constraint
(as discussed in Section 3.8.2):

(u, v, w) ∈ Ksep

(
Rd≥
)
⇔

∃θ ∈ Rd, u− e′θ ∈ R≥,

(θi, v, wi) ∈ Ksep

(
R1
≥
)
, ∀i ∈ JdK,

(2.24)

We use this EF for the example in Section 3.8.4.1.
For the real symmetric domain with Q = Sd⪰, dim(Q) = sd(d) and φ(w) =

∑
i∈JdKφ(λi(W )),

where λi(W ) is the ith eigenvalue of W = mat(w) ∈ Sd⪰. We adapt the ‘eigenvalue ordering’ EF
from Ben-Tal and Nemirovski (2001, Proposition 4.2.1). This is a very large EF:

(u, v, w) ∈ Ksep

(
Sd⪰
)
⇔

∃λ ∈ Rd, s ∈ Rd−1, Zi ∈ Sd⪰,∀i ∈ Jd− 1K,

e′λ = tr(W ), λi ≥ λi+1,∀i ∈ Jd− 1K,∑
i∈JjKλi − jsj − tr(Zj) ≥ 0, ∀j ∈ Jd− 1K,

Zj −W + sjI(d) ∈ Sd⪰, ∀j ∈ Jd− 1K,

(u, v, λ) ∈ Ksep

(
Rd≥
)
,

(2.25)

where the constraint over Ksep

(
Rd≥
)

is itself replaced with the vector domain EF (2.24). We use this
EF for the examples in Sections 3.8.4.2 and 3.8.4.3.

For the complex Hermitian domain with Q = Hd
⪰, dim(Q) = d2 and we generalize (2.25) using

Hermitian PSD cones. Finally, we apply the Kc⪰ EF (2.4). We use this EF for the example in
Section 3.8.4.4.

2.3 Examples and computational testing

In Sections 2.3.1 to 2.3.7, we present example problems with NFs using some of Hypatia’s predefined
cones and EFs constructed using the techniques from Section 2.2. For each example problem, we
generate random instances of a wide variety of sizes, and we observe larger dimensions and often
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larger barrier parameters for EFs compared to NFs. In Tables 2.2 to 2.11, ν and n, p, q refer to the
NF barrier parameter and primal variable, linear equality, and cone inequality dimensions (in our
general conic form (2.1)), and ν̄, n̄, p̄, q̄ refer to the corresponding EF values. The EFs tend to be
slower and more memory-intensive to construct than the NFs, and often we cannot even build an EF
given time and memory constraints.

For three solver/formulation combinations - Hypatia with NF (Hyp-NF ), Hypatia with EF
(Hyp-EF ), and MOSEK with EF (MO-EF ) - we compare termination statuses, iteration counts,
and solve times in seconds (columns st, it, and time) in Tables 2.2 to 2.11 and Figure 2.1. In
Sections 2.3.2 and 2.3.4 we depend on a geometric mean cone EF, so we compare the EF-exp and
EF-sec formulations from Section 2.2.3.1. For the sake of simplicity, all instances we generate are
primal-dual feasible, so we expect solvers to return optimality certificates. Compared to Hyp-EF
and MO-EF, Hyp-NF generally converges faster and more reliably, and solves larger instances within
time and memory limits.

We perform instance generation, computational experiments, and results analysis with Ubuntu
21.04 and Julia 1.7. We use dedicated hardware with an AMD Ryzen 9 3950X 16-core processor
(32 threads) and 128GB of RAM, and we limit each solver to 16 threads. We use JuMP 0.21.5 and
MathOptInterface 0.9.18 to build all instances. For most examples we use Hypatia 0.5.0, but for the
spectral norm cone examples in Sections 2.3.2 and 2.3.3 we use Hypatia 0.7.0, since we added the
new Kℓspec oracles from Section 2.6 after version 0.5.0. For Hypatia, we use the default set of options
that we describe and test in Section 1.9. We use MOSEK 9 through MosekTools.jl 0.9.4 (which is
maintained in part by MOSEK).1 MOSEK uses its conic interior point method for all solves. We
note that MOSEK heuristically determines whether it is more efficient to solve the primal or dual of
an instance (MOSEK ApS, 2020b, Section 13.1); Hypatia does not do this. We do not disable any
MOSEK features.

Hypatia and MOSEK use similar convergence criteria (see MOSEK ApS (2020b, Section 13.3.2)),
and we set their feasibility and optimality gap tolerances to 10−7. In the solver statistics tables,
asterisks indicate missing data, and we use the following codes for the termination status (st)
columns:

co: the solver claims it has an approximate optimality certificate,

tl: the solver stops itself due to a solve time limit of 1800 seconds, or the solve run is killed because
it takes at least 1.2× 1800 seconds,

rl: the solve is terminated because insufficient RAM is available,

sp: the solver reports slow progress during iterations,
1MOSEK 9’s primal conic form only recognizes conic constraints of the form x ∈ K (MOSEK ApS, 2020a, Section

8), whereas Hypatia accepts the more general affine form h − Gx ∈ K (see (2.1c)). MathOptInterface recognizes
both VectorOfVariables form x ∈ K and VectorAffineFunction form h−Gx ∈ K. Since JuMP and MathOptInterface
(including bridges) use the x ∈ K form whenever possible, unnecessary high dimensional slack variables are not
introduced when instances in Hypatia’s general conic form (2.1) are converted into MOSEK 9’s form.
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er: the solver encounters a numerical error,

m: the model cannot be constructed with JuMP due to insufficient RAM or a model generation
time limit of 1.2× 1800 seconds (this means the EF columns often have missing data),

sk: we skip the solve run because a smaller instance has a tl or rl status, or we skip model generation
because a smaller instance has an m status.

For each solve run that yields a primal-dual point (x, y, z, s) (see Section 1.4; s ∈ K and z ∈ K∗

are the solver’s primal and dual cone interior points at termination), we compute:

ϵ := max

{
∥A′y +G′z + c∥∞

1 + ∥c∥∞
,
∥−Ax+ b∥∞
1 + ∥b∥∞

,
∥−Gx+ h− s∥∞

1 + ∥h∥∞
,
|c′x+ b′y + h′z|
1 + |b′y + h′z|

}
, (2.26)

and if ϵ < 10−5, we underline the corresponding status code (e.g. co, tl) to indicate that the solution
approximately satisfies the optimality certificate conditions from Section 1.4. In our solve time plots
in Figure 2.1, we only plot solve runs with underlined status codes. Finally, for each instance and
each pair of corresponding solve runs with co status codes, we compute the relative difference of the
primal objective values g1 and g2 as ϵ̃ := |g1 − g2|/(1 + max(|g1|, |g2|)). We note ϵ̃ < 10−5 for most
instances and pairs of solvers, and ϵ̃ < 10−3 in all cases.

Simple scripts and instructions for reproducing all results are available in Hypatia’s bench-
marks/natvsext folder. A CSV file containing raw results is available at the Hypatia wiki page.

2.3.1 Portfolio rebalancing

Suppose there are k possible investments with expected returns g ∈ Rk> and covariance matrix
Σ ∈ Sk≻. We let ρ ∈ [−1, 1]k be the investment variable, which must also satisfy side constraints
Fρ = 0, where F ∈ Rl×k. We formulate a risk-constrained portfolio rebalancing optimization
problem as:

maxρ∈Rk g′ρ : (2.27a)

e′ρ = 0, (2.27b)

Fρ = 0, (2.27c)

(1, ρ) ∈ Kℓ∞ , (2.27d)

(γ,Σ1/2ρ) ∈ K∗
ℓ∞ . (2.27e)

Note (2.27d) expresses ρ ∈ [−1, 1]k and (2.27e) is a risk constraint. The EFs for (2.27d) and (2.27e)
follow (2.10a) and (2.10b) and are constructed automatically from the NFs by MathOptInterface’s
bridges. Note the EF is a standard linear program (LP).

To build random instances of (2.27), we generate g with independent uniform positive entries,
and Σ1/2 and F with independent Gaussian entries, for l = k/2 and various values of k. We use
Σ1/2 to compute reasonable values for the risk parameter γ > 0, ensuring feasibility. Our results are
summarized in Table 2.2 and Figure 2.1a. Note that ν = q = 2k + 2, ν̄ = q̄ = 4k + 1, n = k, n̄ = 2k,
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p = p̄ = k/2 + 1. The variable and conic constraint dimensions of the EFs are approximately double
those of the NFs.

In Table 2.3, we compare the solve times of several LP solvers on a subset of sizes for the EF
instances. We run the open source conic IPM solver ECOS 2.0.5 (Domahidi, Chu, and Boyd, 2013),
MOSEK’s conic IPM (the conic column), MOSEK’s intpnt and simplex algorithms (see MOSEK
ApS (2020b, 13.2: Linear Optimization)), and Gurobi 9.5.0’s barrier and primal and dual simplex
algorithms (P simplex, D simplex ; see Gurobi (2022)). Of these LP solvers, MOSEK’s conic IPM
solves the instances fastest. This is why we only include MOSEK’s conic IPM in our main NF
versus EF comparisons in Table 2.2. We emphasize that no general conclusions about LP solver
performance should be made from these results on our small set of relatively dense random instances.

Table 2.2: Portfolio rebalancing solver statistics.

Hyp-NF Hyp-EF MO-EF

k st it time st it time st it time

1000 co 31 0.6 co 25 2.7 co 9 1.7
2000 co 36 2.9 co 28 16 co 10 7.0
4000 co 45 20 co 29 92 co 10 34
6000 co 49 60 co 34 292 co 10 83
8000 co 51 131 co 33 615 co 10 160

10000 co 55 244 co 36 1192 co 12 305
12000 co 62 421 tl 32 1805 co 10 433
14000 co 61 624 sk ∗ ∗ rl ∗ ∗
16000 co 63 924 sk ∗ ∗ sk ∗ ∗
18000 co 64 1327 sk ∗ ∗ sk ∗ ∗
20000 co 66 1810 sk ∗ ∗ sk ∗ ∗

Table 2.3: Portfolio rebalancing EF LP solver time comparisons.

ECOS MOSEK Gurobi

k conic conic intpnt simplex barrier P simplex D simplex

1000 192 1.7 2.3 39 2.8 68 57
4000 ∗ 34 66 ∗ 55 ∗ ∗

10000 ∗ 305 783 ∗ 548 ∗ ∗
20000 ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.3.2 Matrix completion

Suppose there exists a matrix F ∈ Rk×l and we know the entries (Fi,j)(i,j)∈S in the sparsity pattern
S. In the matrix completion problem, we seek to estimate the missing components (Fi,j)(i,j)̸∈S . We
modify the formulation in Agrawal, Diamond, and Boyd (2019, Section 4.3) by replacing the spectral
radius in the objective function with the spectral norm (allowing rectangular matrices) and using a
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convex relaxation of the geometric mean equality constraint:

minρ∈R,X∈Rk×l ρ : (2.28a)

Xi,j = Fi,j ∀(i, j) ∈ S, (2.28b)

(ρ, vec(X)) ∈ Kℓspec(k,l), (2.28c)(
1, (Xi,j)(i,j)̸∈S

)
∈ Kgeo. (2.28d)

To reduce the dimensionality of this problem, we eliminate the equality constraints and the variables
(Xi,j)(i,j)∈S . The EF for (2.28c) follows (2.14a), and for (2.28d) we compare EF-exp and EF-sec (see
Section 2.2.3.1).

We generate random instances of (2.28) with column-to-row ratios m ∈ {10, 20} and l = mk for
varying k. Our results are summarized in Tables 2.4 and 2.5 and Figure 2.1b. Note we only plot
EF-sec results for Hyp-EF and MO-EF, as MOSEK performs better with EF-sec than with EF-exp,
though Hypatia exhibits the opposite trend.

Table 2.4: Matrix completion formulation statistics. Note p = p̄ = 0.

NF EF-exp EF-sec

m k ν n q ν̄ n̄ q̄ ν̄ n̄ q̄

10

5 67 61 312 237 122 1722 182 124 1730
10 201 190 1191 679 380 6674 621 445 6871
15 471 455 2706 1529 910 15059 1188 966 15229
20 826 805 4806 2634 1610 26724 2267 1828 27380
25 1281 1255 7506 4039 2510 41714 4370 3302 44092
30 1851 1820 10821 5789 3640 60074 4425 3867 60757
35 2487 2451 14702 7737 4902 81657 8576 6546 86591
40 3237 3196 19197 10027 6392 106607 8631 7291 109306
45 4104 4058 24309 12668 8116 134933 8686 8153 135046
50 5029 4978 29979 15483 9956 166458 16933 13169 176099
55 6085 6029 36280 18691 12058 201401 16988 14220 207889
60 7210 7149 43150 22106 14298 239576 17043 15340 242704
65 8419 8353 50604 25773 16706 281028 33482 24736 305120
70 9798 9727 58728 29950 19454 326015 33537 26110 345985
75 11198 11122 67373 34190 22244 374090 33592 27505 389875

20

5 105 99 600 401 198 5861 360 226 5947
10 415 404 2405 1421 808 23366 1233 915 23689
15 925 909 5410 3041 1818 52496 2362 1932 52840
20 1646 1625 9626 5294 3250 93284 4515 3672 94552
25 2527 2501 15002 8027 5002 145577 8716 6596 150361
30 3645 3614 21615 11471 7228 209606 8821 7709 211051
35 4918 4882 29383 15380 9764 285125 17118 13073 295054
40 6405 6364 38365 19931 12728 372311 17223 14555 377794
45 8068 8022 48523 25010 16044 471050 17328 16213 471559
50 9969 9918 59919 30803 19836 581528 33817 26301 600925
55 12076 12020 72521 37214 24040 703649 33922 28403 716740
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Table 2.5: Matrix completion solver statistics.

NF EF-exp EF-sec

Hypatia Hypatia MOSEK Hypatia MOSEK

m k st it time st it time st it time st it time st it time

10

5 co 13 0.0 co 18 0.1 co 13 0.7 co 18 0.1 co 9 0.5
10 co 14 0.2 co 32 1.4 co 19 18 co 25 1.4 co 10 10
15 co 18 0.7 co 41 11 co 20 103 co 36 12 co 11 65
20 co 25 2.9 co 48 50 co 20 392 co 49 63 co 11 230
25 co 27 8.2 co 51 144 co 21 1265 co 63 295 co 10 638
30 co 26 24 co 49 325 tl 13 1892 co 47 373 co 11 1654
35 co 36 77 co 53 726 sk ∗ ∗ co 77 1690 rl ∗ ∗
40 co 34 113 co 52 1415 sk ∗ ∗ tl 50 1809 sk ∗ ∗
45 co 37 207 tl 26 1829 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
50 co 40 336 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
55 co 39 519 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
60 co 45 835 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
65 co 47 1320 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
70 ne 42 1802 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
75 tl 23 1809 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

20

5 co 11 0.1 co 24 0.5 co 18 14 co 21 0.5 co 10 8.4
10 co 17 0.5 co 42 17 co 19 318 co 37 18 co 10 191
15 co 24 3.4 co 56 132 tl 16 1877 co 52 141 co 11 1340
20 co 27 14 co 58 510 sk ∗ ∗ co 55 602 rl ∗ ∗
25 co 35 67 co 63 1582 sk ∗ ∗ tl 39 1812 sk ∗ ∗
30 co 44 163 tl 14 1807 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
35 co 44 382 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
40 co 49 754 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
45 co 53 1349 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
50 tl 37 1801 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
55 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
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2.3.3 Multi-response regression

In the multi-response linear regression problem, we seek to estimate a coefficient matrix F ∈ Rm×l

from a design matrix X ∈ Rl×k and response matrix Y ∈ Rm×k. We use a similar formulation to
the one proposed in Yang et al. (2016), with nuclear norm loss and ℓ2 norm regularization:

minρ∈R,µ∈R,F∈Rm×l ρ+ γµ : (2.29a)

(ρ, vec(Y − FX)) ∈ K∗
ℓspec(m,k)

, (2.29b)

(µ, vec(F )) ∈ Kℓ2 . (2.29c)

The EF for NF constraint (2.29b) follows (2.14b).
We generate random instances of (2.29) with l = m ∈ {15, 30} for varying k, and let γ = 0.1. Our

results are summarized in Table 2.6 and Figure 2.1c. Note that ν = 3 +m, ν̄ = ν + k, n = 2 +m2,
p = p̄ = 0, q̄ = n̄+mk. The variable dimensions for the NFs only depend on k and are much smaller
than those of the EFs. The EFs also have much larger conic constraint dimensions.

Table 2.6: Multi-response regression formulation and solver statistics.

form. stats. Hyp-NF Hyp-EF MO-EF

m k n̄ q st it time st it time st it time

15

30 812 677 co 9 0.1 co 10 0.4 co 5 0.2
100 5397 1727 co 9 0.1 co 10 28 co 5 6.5
300 45497 4727 co 9 0.3 tl ∗ ∗ co 5 709

1000 500847 15227 co 10 0.8 sk ∗ ∗ m ∗ ∗
3000 4501847 45227 co 10 3.4 sk ∗ ∗ sk ∗ ∗

10000 50005347 150227 co 9 9.8 sk ∗ ∗ sk ∗ ∗
30000 450015347 450227 co 10 32 sk ∗ ∗ sk ∗ ∗

100000 ∗ 1500227 co 9 97 m ∗ ∗ sk ∗ ∗
300000 ∗ 4500227 co 10 321 sk ∗ ∗ sk ∗ ∗

1000000 ∗ 15000227 rl ∗ ∗ sk ∗ ∗ sk ∗ ∗

30

30 1832 1802 co 11 0.5 co 13 1.8 co 4 0.4
100 6417 3902 co 10 1.2 co 11 54 co 5 12
300 46517 9902 co 11 4.3 tl ∗ ∗ co 5 882

1000 501867 30902 co 10 11 sk ∗ ∗ m ∗ ∗
3000 4502867 90902 co 10 32 sk ∗ ∗ sk ∗ ∗

10000 50006367 300902 co 10 99 sk ∗ ∗ sk ∗ ∗
30000 450016367 900902 co 9 270 sk ∗ ∗ sk ∗ ∗

100000 ∗ 3000902 co 10 1058 m ∗ ∗ sk ∗ ∗
300000 ∗ 9000902 rl ∗ ∗ sk ∗ ∗ sk ∗ ∗

2.3.4 D-optimal experiment design

In a continuous relaxation of the D-optimal experiment design problem (see Boyd and Vandenberghe
(2004, Section 7.5)), the variable µ ∈ Rm is the number of trials to run for each of m experiments,
and our goal is to minimize the determinant of the error covariance matrix (F Diag(µ)F ′)−1, given a
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menu of experiments F ∈ Rk×m useful for estimating a vector in Rk. We require that a total of j
experiments are performed and that each experiment can be performed between 0 and l times. We
formulate this problem as:

maxρ∈R,µ∈Rm ρ : (2.30a)

e′µ = j, (2.30b)

(l/2, µ− (l/2)e) ∈ Kℓ∞ , (2.30c)

(ρ, vec(F Diag(µ)F ′)) ∈ Krtdet. (2.30d)

In an alternative logdet variant of the rtdet variant (2.30), we replace (2.30d) with:

(ρ, 1, vec(F Diag(µ)F ′)) ∈ Klogdet, (2.31)

noting that both variants have the same optimal solution set for µ. The EFs for (2.30c), (2.30d)
and (2.31) follow (2.10a), (2.18) and (2.22). Since the EF for Krtdet depends on a Kgeo EF, for the
rtdet variant we compare EF-exp and EF-sec (see Section 2.2.3.1).

We generate random instances of (2.30) with m = j = 2k and l = 5 for varying k. Our results
are summarized in Tables 2.7 and 2.8 and Figure 2.1d. For the logdet variant, ν = 3+3k, ν̄ = 1+9k,
n = 1 + 2k, p = p̄ = 1. The sizes for the rtdet formulations are similar to those of the logdet
formulations, so we exclude these. Note for the rtdet variant, we only plot EF-sec results for Hyp-EF
and MO-EF, as MOSEK typically performs slightly better with EF-sec than with EF-exp, though
Hypatia exhibits the opposite trend. For both variants, the NFs have much lower variable and conic
constraint dimensions than the EFs.

Table 2.7: D-optimal experiment design rtdet variant solver statistics.

NF EF-exp EF-sec

Hypatia Hypatia MOSEK Hypatia MOSEK

k st it time st it time st it time st it time st it time

50 co 25 0.3 co 22 4.7 co 14 11 co 22 5.1 co 11 10
100 co 25 0.9 co 25 93 co 13 247 co 26 97 co 11 220
150 co 26 2.6 co 27 696 co 12 1580 sp 36 921 co 10 1432
200 co 23 5.8 tl 17 1821 tl 0 1821 tl 17 1848 tl 0 1868
300 co 31 31 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
400 co 29 67 m ∗ ∗ sk ∗ ∗ m ∗ ∗ sk ∗ ∗
500 co 32 152 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
600 co 33 281 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
700 co 32 530 sk ∗ ∗ m ∗ ∗ sk ∗ ∗ sk ∗ ∗
800 co 32 728 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
900 co 36 1253 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

1000 co 33 1729 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
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Figure 2.1: Solve times (in seconds) for solve runs satisfying the convergence check in (2.26).
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Table 2.8: D-optimal experiment design logdet variant formulation and solver statistics.

form. stats. Hyp-NF Hyp-EF MO-EF

k n̄ q q̄ st it time st it time st it time

50 1426 1378 5401 co 25 0.3 co 21 4.5 co 15 12
100 5351 5253 20801 co 26 0.9 co 25 91 co 15 277
150 11776 11628 46201 co 29 3.0 co 27 690 tl 14 1825
200 20701 20503 81601 co 28 7.2 tl 17 1849 sk ∗ ∗
300 46051 45753 182401 co 36 36 sk ∗ ∗ sk ∗ ∗
400 81401 81003 323201 co 36 81 m ∗ ∗ sk ∗ ∗
500 126751 126253 504001 co 36 169 sk ∗ ∗ sk ∗ ∗
600 182101 181503 724801 co 36 298 sk ∗ ∗ sk ∗ ∗
700 ∗ 246753 ∗ co 39 624 sk ∗ ∗ m ∗ ∗
800 ∗ 322003 ∗ co 37 838 sk ∗ ∗ sk ∗ ∗
900 ∗ 407253 ∗ co 37 1282 sk ∗ ∗ sk ∗ ∗

1000 ∗ 502503 ∗ tl 37 1838 sk ∗ ∗ sk ∗ ∗

2.3.5 Polynomial minimization

Following Papp and Yıldız (2019), we use an SOS formulation to find a lower bound for a multivariate
polynomial f of maximum degree 2k in m variables over the unit hypercube D = [−1, 1]m. We
let U =

(
m+2k
m

)
, L =

(
m+k
m

)
, L̃ =

(
m+k−1
m

)
. We select multivariate Chebyshev basis polynomials

gj , ∀j ∈ JLK of increasing degree up to k, and suitable interpolation points ou ∈ D,∀u ∈ JUK.
To parametrize K∗

SOS(P ), we set up the collection of matrices P by evaluating functions of basis
polynomials at the points:

(P1)u,j = gj(ou) ∀u ∈ JUK, j ∈ JLK, (2.32a)

(P1+i)u,j = gj(ou)
(
1− o2u,i

)
∀i ∈ JmK, u ∈ JUK, j ∈ JL̃K. (2.32b)

Letting f̄ = (f(ou))u∈U be evaluations of f at the points, the conic formulation is:

minρ∈RU f̄ ′ρ : (2.33a)

e′ρ = 1, (2.33b)

ρ ∈ K∗
SOS(P ). (2.33c)

The EF for NF constraint (2.33c) uses K⪰ and is implicit in (2.7b).
We generate random instances of (2.33) for varying m and k. Our results are summarized in

Table 2.9. Note that ν = ν̄, p = p̄ = 1, n = n̄ = q. For fixed m, the conic constraint dimensions are
larger for the EFs and grow much faster for the EFs as the degree k increases. Hyp-NF is faster
than the EF solvers on all instances with k > 1.
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Table 2.9: Polynomial minimization formulation and solver statistics.

form. stats. Hyp-NF Hyp-EF MO-EF

m k ν n q̄ st it time st it time st it time

1 100 201 201 10201 co 12 0.1 co 34 1.2 co 15 27
1 200 401 401 40401 co 14 0.3 co 39 13 co 11 409
1 500 1001 1001 251001 co 18 2.4 co 57 329 rl ∗ ∗
1 1000 2001 2001 ∗ co 19 11 m ∗ ∗ sk ∗ ∗
1 2000 4001 4001 ∗ co 21 73 sk ∗ ∗ sk ∗ ∗
1 3000 6001 6001 ∗ co 24 235 sk ∗ ∗ sk ∗ ∗
1 4000 8001 8001 ∗ co 24 508 sk ∗ ∗ sk ∗ ∗
1 5000 10001 10001 ∗ co 24 916 sk ∗ ∗ sk ∗ ∗
2 15 376 496 23836 co 15 0.4 co 21 5.0 co 10 87
2 30 1426 1891 339946 co 25 10 co 49 751 rl ∗ ∗
2 45 3151 4186 ∗ co 22 58 m ∗ ∗ sk ∗ ∗
2 60 5551 7381 ∗ co 28 300 sk ∗ ∗ sk ∗ ∗
2 75 8626 11476 ∗ co 30 1019 sk ∗ ∗ sk ∗ ∗
3 6 252 455 8358 co 17 0.3 co 17 1.6 co 9 9.1
3 9 715 1330 65395 co 20 3.1 co 24 104 co 9 799
3 12 1547 2925 303030 co 23 20 co 33 1775 rl ∗ ∗
3 15 2856 5456 ∗ co 26 89 m ∗ ∗ sk ∗ ∗
3 18 4750 9139 ∗ er 34 1340 sk ∗ ∗ sk ∗ ∗
4 4 210 495 5005 co 18 0.4 co 16 1.7 co 8 3.9
4 6 714 1820 54159 co 15 4.8 co 18 222 co 10 579
4 8 1815 4845 ∗ co 20 63 m ∗ ∗ m ∗ ∗
4 10 3861 10626 ∗ co 22 458 sk ∗ ∗ sk ∗ ∗
8 2 117 495 1395 co 26 0.5 co 21 0.7 co 11 0.9
8 3 525 3003 21975 co 18 15 co 16 148 co 8 125
8 4 1815 12870 ∗ co 27 633 m ∗ ∗ m ∗ ∗

16 1 33 153 169 co 13 0.1 co 12 0.7 co 7 0.0
16 2 425 4845 14229 co 27 86 co 22 174 sp 10 192
32 1 65 561 593 co 15 0.7 co 12 1.0 co 7 0.2
64 1 129 2145 2209 co 15 14 co 12 3.1 co 9 3.0
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2.3.6 Smooth density estimation

Rm,2k[x] is the ring of polynomials of maximum degree 2k in m variables (Papp and Yıldız, 2019).
We seek a polynomial density function f ∈ Rm,2k[x] over the domain D = [−1, 1]m that maximizes
the log-likelihood of N given observations zi ∈ D, ∀i ∈ JNK (compare to Papp and Alizadeh (2014,
Section 4.3)). For f to be a valid density it must be nonnegative on D and integrate to one over D,
so we aim to solve:

maxf∈Rm,2k[x]

∑
i∈JNK log(f(zi)) : (2.34a)∫

Df(x) dx = 1, (2.34b)

f(x) ≥ 0 ∀x ∈ D. (2.34c)

To find a feasible solution for (2.34), we build an SOS formulation. We obtain interpolation
points and matrices P parametrizing KSOS(P ), using the techniques from Section 2.3.5. From the
interpolation points and the domain D, we compute a vector of quadrature weights µ ∈ RU . We
compute a matrix B ∈ RN×U by evaluating the U Lagrange basis polynomials corresponding to the
interpolation points (see Papp and Yıldız (2019)) at the N observations. Letting variable ρ represent
the coefficients on the Lagrange basis, the conic formulation is:

maxψ∈R,ρ∈RU ψ : (2.35a)

µ′ρ = 1, (2.35b)

(ψ, 1, Bρ) ∈ Klog, (2.35c)

ρ ∈ KSOS(P ). (2.35d)

The EFs for NF constraints (2.35c) and (2.35d) follow (2.7a) and (2.21).
We generate random instances of (2.35) for varying m and k, with N = 500. Our method for

computing µ is unstable for large m, so we use m ≤ 16. Our results are summarized in Table 2.10.
Note that ν̄ = 999 + ν, p = 1, p̄ = n, q = 501 + n, q̄ = 1001 + n̄− n. All dimensions are larger for
the EFs than for the NFs.

2.3.7 Shape constrained regression

A common type of shape constraint imposes monotonicity or convexity of a polynomial over a basic
semialgebraic set (Hall, 2019, Section 6). Given an m-dimensional feature variable z and a scalar
response variable g, we aim to fit a polynomial f ∈ Rm,2k[x] that is convex over D = [−1, 1]m to N
given observations (zi, gi)i∈JNK with zi ∈ D,∀i ∈ JNK:

minf∈Rm,2k[x]

∑
i∈JNK(gi − f(zi))

2 : (2.36a)

y′(∇2f(x))y ≥ 0 ∀x ∈ D, y ∈ Rm. (2.36b)
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Table 2.10: Smooth density estimation formulation and solver statistics.

form. stats. Hyp-NF Hyp-EF MO-EF

m 2k ν n n̄ st it time st it time st it time

1 250 753 252 16628 co 35 0.2 sp 43 1040 co 25 112
1 500 1003 502 64003 co 42 1.1 rl ∗ ∗ tl 18 1814
1 1000 1503 1002 ∗ co 41 5.1 m ∗ ∗ m ∗ ∗
1 2000 2503 2002 ∗ co 56 23 sk ∗ ∗ sk ∗ ∗
1 4000 4503 4002 ∗ co 82 185 sk ∗ ∗ sk ∗ ∗
1 6000 6503 6002 ∗ co 106 663 sk ∗ ∗ sk ∗ ∗
2 20 678 232 6023 co 50 0.3 co 29 73 co 19 7.4
2 40 1153 862 72468 co 34 2.9 rl ∗ ∗ sp 22 1522
2 60 1928 1892 ∗ co 36 11 m ∗ ∗ m ∗ ∗
2 80 3003 3322 ∗ co 53 64 sk ∗ ∗ sk ∗ ∗
2 100 4378 5152 ∗ co 64 247 sk ∗ ∗ sk ∗ ∗
3 12 754 456 9314 co 57 0.9 co 25 293 sp 19 20
3 18 1217 1331 67226 co 55 6.6 rl ∗ ∗ sp 17 1216
3 24 2049 2926 ∗ co 46 35 m ∗ ∗ m ∗ ∗
3 30 3358 5457 ∗ co 63 348 sk ∗ ∗ sk ∗ ∗
4 8 712 496 6001 co 57 1.0 co 25 133 sp 22 12
4 12 1216 1821 56480 co 72 16 tl ∗ ∗ sp 20 934
4 16 2317 4846 ∗ co 70 192 m ∗ ∗ m ∗ ∗
8 4 619 496 2391 co 96 2.1 co 30 9.8 sp 17 2.1
8 6 1027 3004 25479 co 90 62 tl ∗ ∗ sp 17 379

Constraint (2.36b) ensures the Hessian matrix ∇2f(x) of polynomials is PSD at every point x ∈ D,
which is equivalent to convexity of f over D. To find a feasible solution for (2.36), we build an SOS
formulation. The polynomial variable, represented in an interpolant basis with the optimization
variable ρ ∈ RU , has degree 2k and U =

(
m+2k
m

)
coefficients. Each polynomial entry of ∇2f(x)

has degree 2k − 2 and Ū =
(
m+2k−2

m

)
coefficients. Following the descriptions in Sections 2.3.5

to 2.3.6, we obtain interpolation points and a Lagrange polynomial basis for these U -dimensional
and Ū -dimensional spaces, and we define the matrix B ∈ RN×U containing evaluations of the
U -dimensional Lagrange basis at the N feature observations. Finally, we let F ∈ Rsd(m)Ū×U be such
that Fρ is a vectorization of the tensor H ∈ Rm×m×Ū (scaled to account for symmetry) with Ha,b,u

equal to the uth coefficient of the (a, b)th polynomial in ∇2f(x) for a, b ∈ JmK and u ∈ JŪK. This
yields the formulation:

minψ∈R,ρ∈RU ψ : (2.37a)

(ψ, g −Bρ) ∈ Kℓ2 , (2.37b)

Fρ ∈ KmatSOS(P ). (2.37c)

Note that for N > U , we use a QR factorization to reduce the dimension of Kℓ2 in (2.37b) from 1+N

to 2 + U . Let [−B g] = QR, where Q ∈ RN×(U+1) has orthonormal columns and R ∈ R(U+1)×(U+1)

is upper triangular. Then (ψ, g − Bρ) ∈ Kℓ2 if and only if (ψ,R(ρ, 1)) ∈ Kℓ2 . The EF for NF
constraint (2.37c) follows (2.8a).
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We generate random instances of (2.37) for varying m and k, with N = ⌈1.1U⌉. We exclude the
case m = 1, since KSOS(P ) could be used in place of KmatSOS(P ). Our results are summarized in
Table 2.11. Note that ν = ν̄, p = 0, p̄ = q − n− 1, q̄ = n̄+ 1. All dimensions are larger for the EFs.
The instances are numerically challenging, and MO-EF often encounters slow progress.

Table 2.11: Shape constrained regression formulation and solver statistics.

form. stats. Hyp-NF Hyp-EF MO-EF

m 2k ν n n̄ q st it time st it time st it time

2 10 72 67 952 203 co 18 0.0 co 24 0.6 sp 19 0.4
2 20 292 232 14527 803 co 37 0.5 sp 68 1348 sp 20 60
2 30 662 497 73727 1803 co 58 5.6 rl ∗ ∗ tl 12 1845
2 40 1182 862 ∗ 3203 co 84 34 m ∗ ∗ sk ∗ ∗
2 50 1852 1327 ∗ 5003 er 52 161 sk ∗ ∗ sk ∗ ∗
2 60 2672 1892 ∗ 7203 er 120 939 sk ∗ ∗ sk ∗ ∗
3 8 152 166 3391 671 co 19 0.1 co 27 14 sp 23 4.3
3 12 485 456 31347 2173 co 38 3.5 tl ∗ ∗ sp 15 244
3 16 1118 970 161584 5051 co 61 44 m ∗ ∗ rl ∗ ∗
3 20 2147 1772 ∗ 9753 co 87 325 sk ∗ ∗ sk ∗ ∗
3 24 3668 2926 ∗ 16727 co 111 1605 sk ∗ ∗ sk ∗ ∗
4 6 142 211 2881 912 co 17 0.4 co 23 7.8 sp 18 3.7
4 8 382 496 17686 2597 co 24 3.1 co 38 1621 sp 14 94
4 10 842 1002 79822 5953 co 38 35 rl ∗ ∗ tl 12 2068
4 12 1626 1821 ∗ 11832 co 58 283 m ∗ ∗ sk ∗ ∗
4 14 2858 3061 ∗ 21262 co 72 1430 sk ∗ ∗ sk ∗ ∗
6 4 80 211 1240 800 co 13 0.3 co 15 0.7 co 9 0.6
6 6 422 925 20539 5336 co 22 15 co 32 1630 sp 17 260
6 8 1514 3004 215440 22409 co 29 638 m ∗ ∗ rl ∗ ∗
8 4 138 496 3412 2117 co 19 2.1 co 20 8.0 co 11 4.1
8 6 938 3004 89008 20825 co 31 515 rl ∗ ∗ rl ∗ ∗

10 4 212 1002 7657 4633 co 26 13 co 24 87 co 13 25
12 4 302 1821 15003 8920 co 29 73 co 28 504 co 11 125
14 4 408 3061 26686 15662 co 33 346 tl 0 1884 sp 21 767

2.4 Discussion of results

Although many convex problems are representable with conic EFs using the small number of standard
cones currently recognized by some advanced conic solvers, these formulations can be much larger and
more complex than NFs with exotic cones. In Section 2.2, we describe some of Hypatia’s predefined
exotic cones and analyze general techniques for constructing EFs from NFs that use these cones. For
several example problems in Section 2.3, we propose NFs and generate instances of a wide range
of sizes. Across these instances, we observe much higher empirical dimensions (variable, equality,
and conic constraint dimensions in the conic general form (2.1)) for the EFs than for the NFs. We
demonstrate significant computational advantages from solving the NFs with Hypatia compared to
solving the EFs with either Hypatia or MOSEK 9, especially in terms of solve time and memory
usage. We also observe that the NFs are typically faster and less memory-intensive to generate using
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JuMP.
When there exists an NF that is significantly smaller or easier to model than any EF, it is

probably worth trying Hypatia. In deciding whether to formulate an NF or an EF, it can be helpful
to examine our summary in Table 2.1 of computational properties for NFs and EFs of exotic cone
constraints. For spectral and nuclear norm constraints, when the matrix (W ∈ Rd1×d2) has many
more columns than rows (d2 ≫ d1), the dimensions look relatively more favorable for the NF.
For SOS and SOS matrix constraints, the dimensions grow much more slowly for the NF as the
polynomial degree increases. Sometimes the modeler has to choose between different EFs. For our
matrix completion problem and experiment design root-determinant variant, we compare two EFs
for the geometric mean cone and find that Hypatia performs better with the exponential cone EF
(EF-exp) and MOSEK performs better with the second order cone EF (EF-sec).

If the modeler has an NF that uses an exotic cone not already defined in Hypatia, the user can
add support for the cone through Hypatia’s generic cone interface. It may require some effort to make
the cone oracles as efficient and numerically stable as possible. In Sections 2.5 and 2.6, we describe
oracle implementations for the PSD slice cone class from Section 2.2.1 and the infinity/spectral
norm cone class from Section 2.2.2, and in Chapter 3, we propose new LHSCBs and oracles for the
spectral function cone class from Section 2.2.3.

2.5 Oracles for positive semidefinite slice cones

In this section, we define LHSCBs and derive efficient oracle procedures for cones that can be
characterized as intersections of slices of the PSD cone. We introduce examples of these cones and
their dual cones in Section 2.2.1.

First, we consider a proper cone K ⊂ Rq that is an inverse linear image (or slice) of the PSD
cone So⪰ of side dimension o. Suppose:

K := {s ∈ Rq : Λ(s) ⪰ 0}, (2.38)

where Λ : Rq → So is a linear operator, with adjoint linear operator Λ∗ : So → Rq. Then the dual
cone can be characterized as:

K∗ := {s ∈ Rq : ∃S ⪰ 0, s = Λ∗(S)}. (2.39)

We note that for K⪰ (the self-dual vectorized PSD cone), we can let q = sd(o), Λ(s) = mat(s),
and Λ∗(S) = vec(S). Given a point s ∈ Rq, strict feasibility for K can be checked, for example, by
attempting a Cholesky factorization Λ(s) = LL′, where L is lower triangular.

For K we have the LHSCB f(s) = − logdet(Λ(s)) with parameter ν = o. Given a point s ∈ int(K),
we have Λ(s) ∈ So≻ and its inverse Λ−1(s) ∈ So≻. For a direction δ ∈ Rq, for f at s we can write the
gradient, and the Hessian and third order oracle (TOO, defined in (1.5)) applied to δ, as:

g(s) = −Λ∗(Λ−1(s)), (2.40a)
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H(s)δ = Λ∗(Λ−1(s)Λ(δ)Λ−1(s)), (2.40b)

T(s, δ) = Λ∗(Λ−1(s)Λ(δ)Λ−1(s)Λ(δ)Λ−1(s)). (2.40c)

Note the expressions for g and H are from Papp and Yıldız (2019, Section 3). If we have, for
example, a Cholesky factorization Λ(s) = LL′ (computed during the feasibility check), then the
oracles in (2.40) are easy to compute if Λ and Λ∗ are easy to apply. We can compute the TOO
(2.40c) using the following steps:

Y := L−1Λ(δ)Λ−1(s), (2.41a)

Z := Y ′Y = Λ−1(s)Λ(δ)Λ−1(s)Λ(δ)Λ−1(s), (2.41b)

T(s, δ) = Λ∗(Z). (2.41c)

We note (2.41a) can be computed using back-substitutions with L, and (2.41b) is a simple symmetric
outer product. We use this approach to derive simple TOO procedures for KLMI in Section 2.5.1
and for K∗

SOS and K∗
matSOS in Section 2.5.2 when r = 1.

Now we consider the more general case of a cone K that can be characterized as an intersection
of slices of PSD cones, for example K∗

SOS and K∗
matSOS when r > 1. Suppose:

K := {s ∈ Rq : Λl(s) ⪰ 0,∀l ∈ JrK}, (2.42)

where Λl : Rq → Sol , for l ∈ JrK. Then the dual cone can be characterized as:

K∗ :=
{
s ∈ Rq : ∃S1, . . . , Sr ⪰ 0, s =

∑
l∈JrKΛ

∗
l (Sl)

}
. (2.43)

Feasibility for K can be checked by performing r Cholesky factorizations. If we let fl(s) =

− logdet(Λl(s)),∀l ∈ JrK, then f(s) =
∑

l∈JrKfl(s) is an LHSCB for K with parameter ν =
∑

l∈JrKol.
Clearly, g(s), H(s)δ (and the explicit Hessian matrix), and T(s, δ) can all be computed as sums over
l ∈ JrK of the terms in (2.40c).

2.5.1 Linear matrix inequality cone

We denote the inner product of X,Y ∈ Ss as ⟨X,Y ⟩ = tr(XY ) ∈ R, computable in O(s2) time. For
KLMI parametrized by Pi ∈ Ss, ∀i ∈ JdK, we define for w ∈ Rd and W ∈ Ss:

Λ(w) :=
∑

i∈JdKwiPi ∈ Ss, (2.44a)

Λ∗(W ) := (⟨Pi,W ⟩)i∈JdK ∈ Rd. (2.44b)

Our implementation uses specializations of (2.40) and (2.41) for KLMI. For w ∈ int(KLMI) and
direction δ ∈ Rd, using the Cholesky factorization Λ(w) = LL′, we compute:

Qi := L−1Pi(L
−1)′ ∈ Ss ∀i ∈ JdK, (2.45a)

g(w) = (− tr(Qi))i∈JdK, (2.45b)
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R :=
∑

j∈JdKδjQj ∈ Ss, (2.45c)

H(w)δ = (⟨Qi, R⟩)i∈JdK, (2.45d)

T(w, δ) = (⟨Qi, R′R⟩)i∈JdK, (2.45e)

and we compute the explicit Hessian oracle as:

(H(w))i,j = ⟨Qi, Qj⟩ ∀i, j ∈ JdK. (2.46)

The symmetric form of Qi and the use of a symmetric outer product R′R in (2.45e) are beneficial
for efficiency and numerical performance.

2.5.2 Polynomial weighted sum-of-squares dual cones

Recall that Hypatia uses LHSCBs for K∗
SOS,K∗

matSOS, because LHSCBs for KSOS,KmatSOS with
tractable oracles are not known (see Kapelevich, Coey, and Vielma (2021)). Since the scalar SOS
dual cone K∗

SOS is a special case of the matrix SOS dual cone K∗
matSOS with t = 1, we only consider

K∗
matSOS here. In general, K∗

matSOS is an intersection of r slices of K⪰ (see (2.42)), so the gradient,
Hessian, and TOO oracles are all additive; for simplicity, we only consider r = 1 (and s1 = s, P1 = P )
below.

To enable convenient vectorization, we define ρi,j for indices i, j ≥ 1 as:

ρi,j :=

1 if i = j,
√
2 otherwise.

(2.47)

For K∗
matSOS parametrized by P ∈ Rd×s and t ≥ 1, we define for w ∈ Rsd(t)d and W ∈ Sst:

Λ(w) :=
[
P ′Diag

(
ρ−1
i,j wmax(i,j),min(i,j),:

)
P
]
i,j∈JtK ∈ Sst, (2.48a)

Λ∗(W ) := (ρi,j diag(P (W )i,jP
′))i∈JtK,j∈JiK ∈ Rsd(t)d, (2.48b)

where w = (wi,j,:)i∈JtK,j∈JiK and wi,j,: ∈ Rd is the contiguous slice of w corresponding to the interpolant
basis values in the (i, j)th (lower triangle) position, matrix (S)i,j is the (i, j)th block in a block
matrix S (with blocks of equal dimension), and [Si,j ]i,j∈JtK is the symmetric block matrix with matrix
Si,j in the (i, j)th block.

We implement efficient and numerically stable specializations of the oracles in (2.40) and (2.41).
Suppose we have w ∈ int(K∗

matSOS) and direction δ ∈ Rsd(t)d, and a Cholesky factorization Λ(w) =

LL′. For each i, j ∈ JtK : i ≥ j and p ∈ JdK, we implicitly compute oracles according to:

(Q)i,j,p := ((L−1)i,jP
′)ep ∈ Rs, (2.49a)

(g(w))i,j,p = −ρi,jQ′
i,:,pQ:,j,p, (2.49b)

(R)i,j,p := (L−1Λ(δ)(L−1)′Q)i,jep ∈ Rs, (2.49c)

(H(w)δ)i,j,p = ρi,jQ
′
i,:,pR:,j,p, (2.49d)
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(T(w, δ))i,j,p = ρi,jR
′
i,:,pR:,j,p. (2.49e)

Letting Q2
i,j := (Q′Q)i,j ∈ Sd, we compute the Hessian oracle according to:

(H(w))(i,j,:),(k,l,:) =
1
2ρi,jρk,l

(
Q2
i,k ⊙Q2

j,l +Q2
i,l ⊙Q2

j,k

)
∈ Sd ∀i, j, k, l ∈ JtK, (2.50)

where X ⊙ Y ∈ Sd denotes the Hadamard (elementwise) product of X,Y ∈ Sd.

2.5.3 Sparse positive semidefinite cone

Let S = ((il, jl))l∈JdK be a collection of row-column index pairs defining the sparsity pattern of the
lower triangle of a symmetric matrix of side dimension s (including all diagonal elements). We do
not require S to be a chordal sparsity pattern (unlike M. S. Andersen, Dahl, and Vandenberghe
(2013) and Burer (2003)), as this restriction is not necessary for the oracles Hypatia uses. Note
s ≤ d ≤ sd(s). For KsPSD parametrized by S, we define Λ : Rd → Ss as the linear operator satisfying,
for all i, j ∈ JsK : i ≥ j:

(Λ(w))i,j :=

ρ−1
i,j wl if i = il = j = jl,

0 otherwise,
(2.51)

where ρi,j is given by (2.47). Then Λ∗ is the vectorized projection onto S, i.e. for W ∈ Ss:

Λ∗(W ) := (ρi,jWi,j)(i,j)∈S ∈ Rd. (2.52)

Consider w ∈ int(KsPSD) and direction δ ∈ Rd. The gradient (2.40a) and Hessian product (2.40b)
for KsPSD can be computed using M. S. Andersen, Dahl, and Vandenberghe (2013, Algorithms 4.1
and 5.1). To derive the TOO, we use the fact that:

− 2T(w, δ) = ∇3f(w)[δ, δ] =
d2

dt2
∇f(w + tδ)

∣∣
t=0

. (2.53)

In order to succinctly describe our TOO approach as an extension of the procedures in M. S.
Andersen, Dahl, and Vandenberghe (2013), we describe an approach based on a sparse LDL
factorization of Λ(w). However, our current implementation in Hypatia uses a sparse Cholesky
(LL′) factorization, which is very similar to the LDL-based approach here. We compute the sparse
Cholesky factors using Julia’s SuiteSparse wrapper of CHOLMOD (Y. Chen et al., 2008). We note
that Hypatia implements a supernodal generalization (see M. S. Andersen, Dahl, and Vandenberghe
(2013, Section 7)) of the TOO procedure we describe below. Before we describe the TOO procedure,
we repeat useful definitions from M. S. Andersen, Dahl, and Vandenberghe (2013), define higher
order derivative terms, and differentiate several equations that are used for the gradient and Hessian
oracles. As discussed in Section 1.8, Hypatia computes the feasibility check and gradient oracles
before the TOO, and our TOO procedure reuses cached values computed for these oracles.

We define:
R := Λ(∇f(w + tδ)). (2.54)
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Let LDL′ = Λ(w) be a sparse LDL factorization, i.e. L is a sparse unit lower triangular matrix and
D is a positive definite diagonal matrix. The sparsity pattern of L is associated with an elimination
tree (M. S. Andersen, Dahl, and Vandenberghe, 2013, Section 2), and each column of L corresponds
to a node of this tree. Let Ik be the ordered row indices of nonzeros below the diagonal in column k
of L, and let Jk = Ik ∪ {k}. Let ch(i) denote the children of node i in the tree. For an index set I
let I(i) denote the ith element. For index sets J ⊂ I, we define EI,J ∈ R|I|×|J | satisfying, i ∈ J|I|K,
j ∈ J|J |K:

(EI,J )i,j :=

1 if I(i) = J (j),

0 otherwise.
(2.55)

Let Ui be the update matrix for node i (see M. S. Andersen, Dahl, and Vandenberghe (2013, Equation
14)):

Ui := −
∑

k∈ch(i)∪{i}Dk,kLIi,kL
′
Ii,k. (2.56)

Let Ḋ, L̇, U̇ , Ṙ and D̈, L̈, Ü , R̈ denote the first and second derivatives of D, L, U , R with respect
to the linearization variable t in (2.53). For convenience, we let:

L̄j :=

[
1 0

−LIj ,j I(d)

]
. (2.57)

Suppose we have computed Ḋ, L̇, U̇ according to M. S. Andersen, Dahl, and Vandenberghe
(2013, Equation 30). Differentiating M. S. Andersen, Dahl, and Vandenberghe (2013, Equation 30)
once with respect to t gives:D̈j,j P ′

j

Pj 2Dj,jL̇Ij ,jL̇
′
Ij ,j + Üj

 = L̄j
(∑

i∈ch(j)EJj ,IiÜiE
′
Jj ,Ii

)
L̄′
j , (2.58)

where Pj := 2Ḋj,jL̇Ij ,j + Dj,jL̈Ij ,j for convenience. This allows us to compute D̈, L̈, Ü . M. S.
Andersen, Dahl, and Vandenberghe (2013, Equations 21 and 22) show that:

RIj ,j = −RIj ,IjLIj ,j , (2.59a) Rj,j R′
Ij ,j

RIj ,j RIj ,Ij

[ 1

LIj ,j

]
=

D−1
j,j

0

 , (2.59b)

for each node j. Differentiating (2.59a) once with respect to t gives:

ṘIj ,j = −RIj ,IiL̇Ij ,j − ṘIj ,IjLIj ,j . (2.60)
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Differentiating (2.59b) twice and substituting (2.59a) and (2.60), we have: R̈j,j R̈′
Ij ,j

R̈Ij ,j R̈Ij ,Ij

 = L̄′
j

2Ḋ2
j,jD

−3
j,j − D̈j,jD

−2
j,j + 2L̇′

Ij ,jRIj ,Ij L̇Ij ,j Q′
j

Qj R̈Ij ,Ij

 L̄j , (2.61)

where Qj := −RIj ,Ij L̈Ij ,j − 2ṘIj ,Ij L̇Ij ,j for convenience. This allows us to compute R̈. Finally, by
(2.53) and (2.54), we can compute the TOO as:

− 2T(w, δ) = Λ∗(R̈). (2.62)

We now write the high-level TOO procedure. For convenience, we let:

∆ = Λ(δ) ∈ Ss. (2.63)

Following E. D. Andersen, Roos, and Terlaky (2003), we define K and M as sparse matrices with
the same structure as L, satisfying for all j ∈ JsK:

Kj,j = Ḋj,j , (2.64a)

KIj ,j = Dj,jL̇Ij ,j , (2.64b)

Mj,j = D−2
j,jKj,j , (2.64c)

MIj ,j = D−1
j,jRIj ,IjKIj ,j . (2.64d)

The first three steps in the TOO procedure below compute Ḋ, L̇, U̇ , and Ṙ and are identical to
steps in M. S. Andersen, Dahl, and Vandenberghe (2013, Algorithm 5.1).

1. Iterate over j ∈ JsK in topological order, computing KJj ,j and U̇j according to:[
Kj,j K ′

Ij ,j

KIj ,j U ′
j

]
= L̄j

([
∆j,j ∆′

Ij ,j

∆Ij ,j 0

]
+
∑

i∈ch(j)EJj ,IiU
′
iE

′
Jj ,Ii

)
L̄′
j . (2.65)

2. For j ∈ JsK, store Ḋj,j and L̇Ij ,j from (2.64a) and (2.64b), and compute MJj ,j from (2.64c)
and (2.64d).

3. Iterate over j ∈ JsK in reverse topological order, computing ṘJj ,j according to:[
Ṙj,j Ṙ′

Ij ,j

ṘIj ,j ṘIj ,Ij

]
= L̄′

j

[
Mj,j M ′

Ij ,j

MIj ,j ṘIj ,Ij

]
L̄j , (2.66)

and updating matrices ṘIj ,Ij for each child i ∈ ch(j) of vertex j according to:

ṘIi,Ii = E′
Jj ,Ii

[
Ṙj,j Ṙ′

Ij ,j

ṘIj ,j ṘIj ,Ij

]
EJj ,Ii . (2.67)

4. Iterate over j ∈ JsK in topological order, computing D̈j,j , L̈Ij ,j , Üj from (2.58).
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5. Iterate over j ∈ JsK in reverse topological order, computing R̈j,j , R̈Ij ,j , R̈Ij ,Ij from (2.61).

6. Compute T(w, δ) using R̈ and (2.62).

2.6 Oracles for infinity/spectral norm cones

In this section, we derive efficient and numerically stable oracle procedures for infinity/spectral norm
cones. We discuss these cones and their dual cones (epigraphs of one/nuclear norms) in Section 2.2.2.
The real/complex vector infinity norm cone Kℓ∞ and the symmetric/Hermitian matrix spectral norm
cone Kℓsspec are slices of the most general case: the real/complex rectangular matrix spectral norm
cone Kℓspec . Furthermore, the LHSCBs and oracle procedures for Kℓ∞ and Kℓsspec are specializations
of those for Kℓspec . For simplicity, in this section we mainly focus on the real Kℓspec case; the complex
Kℓspec case is almost identical.

The oracles we derive for Kℓspec are all based on a single factorization: a thin singular value
decomposition (SVD) of the matrix. These oracles are all analytic, i.e. closed form in terms of the
SVD. As we discuss briefly in Section 1.6, Hypatia’s QR-Cholesky linear system solver does not
require explicit (inverse) Hessian matrices, only (inverse) Hessian products applied implicitly to
arrays. A particularly important result is our derivation of a closed form inverse Hessian product
formula in Section 2.6.4.

2.6.1 Barrier functions

Suppose the matrix W has d rows and s columns, and d ≤ s. Let σi(W ) ≥ 0 be the ith largest
singular value of W . Recall the real rectangular spectral norm cone definition from (2.13a):

Kℓspec(d,s) := {(u,w) ∈ R≥ × Rds : u ≥ σ1(W )}, (2.68)

where W := matd,s(w) ∈ Rd×s. The complex W case is a simple generalization. We use the LHSCB
from Nesterov and Nemirovski (1994) with ν = 1 + d:

f(u,w) = − log(u)− logdet(uI(d)−WW ′/u) (2.69a)

= − log(u)−
∑

i∈JdK log(u− (σi(W ))2/u). (2.69b)

Note that for the slice Kℓ∞ of Kℓspec , this LHSCB reduces to our Kℓ∞ LHSCB from Güler (1996,
Section 7.5) with ν = 1 + d:

f(u,w) = − log(u)−
∑

i∈JdK log(u− |wi|
2/u). (2.70)

For Kℓsspec , the LHSCB has the same form (2.69) but W is symmetric or Hermitian. We are not
aware of any LHSCBs with smaller parameters for these cones. Note the central initial interior point
oracle (defined in Section 1.3) for these cones is (

√
ν, 0).
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2.6.2 Feasibility checks

Suppose we need to check strict primal or dual cone feasibility for a point (u,w). First we check
the simplest condition - that the epigraph variable u is positive. For Kℓ∞ , the norms are cheap to
compute, so the feasibility checks are straightforward. For Kℓsspec and Kℓspec , we can of course check
feasibility by computing an SVD of W and accessing the singular values. However, to improve the
efficiency of the feasibility checks, we start by checking certain easily-computable bounds on the
spectral and nuclear norms.

For the spectral norm cone, we first compute a lower bound bl on the spectral norm of W :

bl := max
(
max(∥w∥, ∥w∥1)/

√
d, ∥w∥∞/

√
s
)
. (2.71)

If bl ≥ u, then (u,w) is not strictly feasible. Otherwise, we compute an upper bound on the spectral
norm:

bu := min
(
∥w∥,

√
∥w∥1∥w∥∞

)
. (2.72)

If bu < u, the point is strictly feasible. Otherwise, we perform a Cholesky factorization of uI(d)−
WW ′/u, which succeeds if and only if the point is strictly feasible. This check tends to be faster
than the SVD-based check. Finally, if the point is strictly feasible, we compute the SVD of W . This
factorization is cached and reused to compute all LHSCB oracles.

For the nuclear norm cone, we first check whether
√
d∥w∥ < u, in which case (u,w) is strictly

feasible. Next, we check whether ∥w∥ ≥ u, in which case the point is not strictly feasible. Otherwise,
we compute the nuclear norm of W by summing the squareroots of the eigenvalues of WW ′, since
computing the eigendecomposition of WW ′ tends to be faster than computing the SVD of W .

2.6.3 Directional derivatives

Suppose we have a strictly feasible point ũ := (u,w) ∈ int(Kℓspec). Let W = U Diag(σ)V ′ be the thin
SVD of W , where σ ∈ Rr≥ are the singular values and U ∈ Rd×d, V ∈ Rs×d are orthogonal matrices
i.e. UU ′ = U ′U = V ′V = I(d) (note V V ′ is not the identity in general). For convenience, we define:

µi := u−1σi, (2.73a)

ζi :=
1
2(u− µiσi), (2.73b)

τi := ∇uζi = 1
2(1 + µ2i ) = 1− u−1ζi, (2.73c)

and note:
∇σiζi = −µi. (2.74)

Suppose p̃ := (p, r) is a direction in the ambient space of ũ, i.e. p ∈ R and R = matd,s(r) ∈ Rd×s.
Let:

R̂ := U ′RV ∈ Rd×d, (2.75a)

Z̄ := Diag((ζ−1
i )i∈JdK) = (Diag(ζ))−1, (2.75b)
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M := Diag(µ), (2.75c)

S1 := pI(d)− 1
2(R̂M +MR̂′) ∈ Sr, (2.75d)

S2 :=
1
2u

−1(p2I(d)− R̂R̂′)− S1Z̄S1 ∈ Sr. (2.75e)

Note for any S ∈ Rd×d, we have ⟨USV ′, R⟩ = ⟨S, R̂⟩.
The components of the gradient g := ∇f(ũ) are:

gu = (d− 1)u−1 −
∑

i∈JdKζ
−1
i , (2.76a)

gW = UMZ̄V ′. (2.76b)

Differentiating (2.76), the components of Hessian product H := ∇2f(ũ)[p̃] are:

Hu = ∇ugup+∇ugW [R] (2.77a)

= −(d− 1)u−2p−
∑

i∈JdKζ
−1
i (u−1p+ ζ−1

i S1,i,i), (2.77b)

HW = ∇W gup+∇W gW [R] (2.77c)

= UZ̄(u−1U ′R− S1MZ̄V ′). (2.77d)

Differentiating (2.77), the third order directional derivative T := ∇3f(ũ)[p̃, p̃] is:

Tu = ∇uHup+∇uHW [R] (2.78a)

= 2(d− 1)u−3p2 +
∑

i∈JdK2ζ
−2
i (u−1pS1,i,i + S2,i,i), (2.78b)

TW = ∇WHup+∇WHW [R] (2.78c)

= −2UZ̄(u−1S1Z̄U
′R+ S2MZ̄V ′). (2.78d)

Note Hypatia’s third order oracle (TOO) defined in (1.5) is simply a rescaling of T by −1/2.
Our implementations of these three (directional) derivative oracles are efficient and numerically

stable, using only O(ds) memory and O(d2s) time.

2.6.4 Inverse Hessian product

We represent the inverse Hessian product as H̄ := (∇2f(ũ))−1[p̃]. For conciseness, we omit a detailed
derivation of the following result, which relies on Kronecker products.

For convenience, let:

ψ := −(d− 1)u−1 +
∑

i∈JdK(u− ζi)
−1 > 0, (2.79a)

Θ := (2(u+ u−1σiσj)
−1)i,j∈JdK ∈ Sr. (2.79b)

Then the u component of H̄ is:

H̄u = ψ−1u
(
p+

∑
i∈JdKσiR̂i,iΘi,i

)
. (2.80)

89



Now let:

Φ := (ζi(u− u−1σiσj)
−1)i,j∈JdK ∈ Rd×d, (2.81a)

∆ := (R̂Diag(σ))⊙ Φ ∈ Rd×d, (2.81b)

S := (∆ +∆′ − ζ−1
i H̄uI(d))⊙Θ ∈ Sr. (2.81c)

where ⊙ denotes the Hadamard (elementwise) product of matrices. Note Φi,i = 1/2, ∀i ∈ JdK. Then
the w component of H̄ is:

H̄W = U Diag(ζ)(uU ′R− SDiag(σ)V ′). (2.82)

The inverse Hessian product oracle H̄ given by (2.80) and (2.82) is essentially as easy to compute
as the Hessian product oracle H in (2.77). We compare the time and memory complexity of this
procedure with that of a naive approach that computes the explicit Hessian matrix, performs a
Cholesky factorization, and uses a direct linear solve. We exclude the cost of the SVD, which is
computed only once during the primal cone feasibility check and reused. The closed form H̄ only uses
O(ds) memory, but the naive approach requires an explicit Hessian, so it uses O(d2s2) memory. The
closed form H̄, like the closed form Hessian product H, requires only a few matrix multiplications
of size at most d × d by d × s, so it uses O(d2s) time. The naive approach requires a Cholesky
factorization of the Hessian, which takes O(d3s3) time.

Now we compare the practical performance of these two alternative procedures. Using Hypatia,
we first solve NF instances of a range of sizes k for the examples from Section 2.3.2 (with m = 10)
and Section 2.3.3 (with l = m = 15). For each instance, at Hypatia’s final IPM iterate, we take the
direction p̃ = g (i.e. the gradient oracle at the iterate) and compute H̄ for this direction using each
procedure. To measure the numerical accuracy of each procedure, we compute ϵ := |1− ν−1⟨H̄, g⟩|,
which is the violation on a particular identity (Nesterov, Todd, and Ye, 1997, Equation 2.5) satisfied
by a logarithmically homogeneous function such as the LHSCB f . We also time each procedure,
excluding Hessian memory allocation time for the naive procedure.

Our results are displayed in Figure 2.2. We note that the Cholesky factorization fails numerically
(i.e. LAPACK errors) for some sizes; when this occurs, Hypatia uses a Bunch-Kaufman (symmetric
LDLT-like) factorization as a fallback. These comparisons demonstrate that our closed form formula
allows computing H̄ faster and with greater numerical accuracy.
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Figure 2.2: For instances of two examples, the speed and logarithmic homogeneity condition violation
(at the final iterate) for the two inverse Hessian product procedures.
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Chapter 3

Conic optimization with spectral
functions on Euclidean Jordan algebras

Abstract

Spectral functions on Euclidean Jordan algebras arise frequently in convex models. Despite
the success of primal-dual conic interior point solvers, there has been little work on enabling
direct support for spectral function cones, i.e. proper nonsymmetric cones defined from epigraphs
and perspectives of spectral functions. We propose simple logarithmically homogeneous barriers
for spectral function cones and we derive efficient, numerically stable procedures for evaluating
barrier oracles such as inverse Hessian operators. For two useful classes of spectral function
cones - the root-determinant cones and the matrix monotone derivative cones - we show that the
barriers are self-concordant, with nearly optimal parameters. We implement these cones and
oracles in Hypatia, and we write simple, natural conic formulations for four applied examples. In
our computational experiments, Hypatia solves these natural formulations more efficiently than
specialized conic solvers such as MOSEK 9 solve equivalent standard conic extended formulations.

3.1 Introduction

In convex optimization applications, we frequently encounter spectral functions on Euclidean Jordan
algebras such as the real vectors and real symmetric or complex Hermitian matrices. In this context,
a spectral function is a real-valued symmetric function of the (real) eigenvalues. Examples include
the geometric mean (or root-determinant), the entropy (e.g. von Neumann entropy), and the trace
of the inverse (e.g. the A-optimal design criterion). Indeed, many disciplined convex programming
(DCP) functions are spectral functions (Grant, Boyd, and Ye, 2006; Grant and Boyd, 2014). The
spectral function cones are proper cones defined from epigraphs or hypographs of homogeneous
spectral functions or perspective functions of nonhomogeneous spectral functions. These cones allow
simple, natural conic reformulations of a wide range of convex optimization problems. However, there
has been little prior work enabling direct support for various spectral function cones in primal-dual
conic solvers.
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As we discuss in Chapter 1, conic interior point methods (IPMs) require tractable oracles for
logarithmically homogeneous self-concordant barrier (LHSCB) functions for proper cones. Complexity
analysis of idealized IPMs shows that they converge to ε tolerance in O(

√
ν log(1/ε)) iterations,

where ν is the barrier parameter of the LHSCB. Currently, most IPMs are specialized for the
nonnegative, second order, and positive semidefinite (PSD) cones, which are cones of squares of
Euclidean Jordan algebras. However these symmetric cones limit modeling generality and often
require the construction of large extended formulations (EFs). For many spectral function cones (e.g.
the epigraph of the perspective of negative entropy), equivalent EFs using only symmetric cones
do not exist, and when they do, they can be impractically large. Nonsymmetric conic IPMs (e.g.
by Nesterov, Todd, and Ye (1996), Nesterov (2012), and Skajaa and Ye (2015)) can handle a much
broader class of cones.

In Chapter 1, we generalize and enhance the practical performance of the IPM by Skajaa and Ye
(2015) and test our implementations in Hypatia. Recall that Hypatia’s generic cone interface allows
specifying a proper cone K by implementing a small list of oracles, and once K is defined, both K
and its dual cone K∗ may be used in any combination with other recognized cones to construct conic
models. The oracles Hypatia uses for ideal performance include an initial interior point t ∈ int(K), a
feasibility test for the cone interior int(K) and for the dual cone interior int(K∗), and several LHSCB
oracles - in particular, the gradient, (inverse) Hessian product, and scaled third order directional
derivative. Fast and numerically stable procedures for evaluating cone oracles are crucial for practical
performance in conic IPM solvers such as Hypatia.

Our first main contribution is to define simple logarithmically homogeneous barriers for spectral
function cones and derive efficient and numerically stable barrier oracle procedures. For example,
for the case where the spectral function is separable, we show how to apply the inverse Hessian
operator of the barrier function very cheaply using a closed form formula, without the need to
compute or factorize an explicit Hessian matrix (which can be expensive and prone to numerical
issues). Similarly, for the negative log-determinant and root-determinant spectral function cones, we
derive highly-efficient specialized oracle procedures.

Our second main contribution is to show that for two important subclasses of spectral function
cones - the root-determinant cones and the matrix monotone derivative (MMD) cones - the barriers
we propose are LHSCBs. These LHSCBs have parameters that are only a small additive increment
of one larger than the parameter of the LHSCB for the cone of squares domain of the cone, hence
the parameters are near-optimal. MMD cones allow modeling epigraphs of a variety of useful convex
separable spectral functions, e.g. the trace of the negative logarithm, negative entropy, and negative
squareroot. Furthermore, the dual cones of the MMD cones allow modeling epigraphs of even more
separable spectral functions, such as the trace of the inverse and exponential functions.

These developments enable efficient and numerically stable implementations of the MMD cone
and the log-determinant and root-determinant cones in nonsymmetric conic IPMs. We define these
cones through Hypatia’s cone interface. Our MMD cone implementation is parametrized by both
a Jordan algebra domain and an MMD function, allowing the user to define new domains and
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MMD functions. An MMD function is easily specified by implementing a small set of oracles for
its univariate form: the function itself, its first three derivatives, and its convex conjugate, as well
as an interior point for the corresponding MMD cone. We predefine five common MMD functions
and three typical Jordan algebra domains: the real vectors, real symmetric matrices, and complex
Hermitian matrices. In Section 2.2.3, we describe techniques for constructing EFs using standard
cones (those recognized by MOSEK 9; see Section 2.2) for constraints over these spectral function
cones.

We formulate example problems from distribution estimation, experiment design, quantum
information science, and polynomial optimization. The natural formulations (NFs) using these cones
are simpler and smaller than the equivalent EFs. Our computational experiments demonstrate that,
across a wide range of sizes and spectral functions, Hypatia can solve the NFs faster than Hypatia,
MOSEK, or ECOS can solve the equivalent EFs. Furthermore, to illustrate the practical impact
of our efficient oracle procedures, we show that our analytic inverse Hessian product for the MMD
cone is faster and more numerically reliable than a naive direct solve using an explicit Hessian
factorization.

3.1.1 Overview

We describe relevant aspects of Euclidean Jordan algebras, cones of squares, and spectral decomposi-
tions in Section 3.2. In Section 3.3, we define spectral functions on Euclidean Jordan algebras and
give expressions for gradients and second and third order directional derivatives of spectral functions.
We also specialize these formulae for separable spectral functions and the log-determinant case.

In Section 3.4, we define spectral function cones (and their dual cones) from epigraphs of
homogenized convex spectral functions on cones of squares. We propose simple logarithmically
homogeneous barriers for these cones and describe the additional properties that must be satisfied by
an LHSCB. We also define several barrier oracles needed by Hypatia’s IPM. Then in Section 3.5, we
describe fast and numerically stable procedures for these barrier oracles, using the derivative results
from Section 3.3. We specialize the oracle procedures for cones defined from separable spectral
functions and the log-determinant function.

In Section 3.6, we define the MMD cone and its dual cone, and we give useful examples of MMD
functions. We show that for the MMD cone, our barrier function is an LHSCB. In Section 3.7, we
define the root-determinant cone and its dual cone, prove that our barrier is an LHSCB, and derive
efficient oracle procedures. Finally, in Section 3.8, we describe a series of applied examples over
the new root-determinant, log-determinant, and MMD cones and their dual cones. We perform
computational testing to demonstrate the advantages of solving these NFs with Hypatia and to
exemplify the impact of efficient oracle procedures.
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3.2 Jordan algebras

Jordan algebraic concepts provide a useful and straightforward abstraction for spectral functions,
cones, and our barrier results in later sections. We follow the notation of Faraut and Koranyi (1998,
Chapter 2) where possible.

An algebra over the real or complex numbers is a vector space V equipped with a bilinear product
◦ : V × V → V . For w ∈ V , w2 := w ◦ w. We refer to V as a Jordan algebra if for all wa, wb ∈ V :

wa ◦ wb = wb ◦ wa, (3.1a)

wa ◦ (w2
a ◦ wb) = w2

a ◦ (wa ◦ wb). (3.1b)

For example, for V = Rd, we can define ◦ as an elementwise multiplication, or for V = Sd and
V = Hd, we can let wa ◦ wb = 1

2(wawb + wbwa).
Given wa ∈ V , we define the linear map L(wa) : V → V satisfying:

L(wa)wb = wa ◦ wb ∀wb ∈ V. (3.2)

Given w ∈ V , we define the linear map P (w) : V → V satisfying:

P (w) = 2L(w)2 − L(w2). (3.3)

P is called the quadratic representation of V . In general, P (w) ̸= L(w)2 ̸= L(w2) because ◦ need
not be associative. For example, for V = Sd, we have L(w2

a)wb =
1
2(w

2
awb + wbw

2
a), L(wa)2wb =

1
2(L(w

2
a)wb + wawbwa), and P (wa)wb = wawbwa.

For any positive integer k, we have (Manuel V.C. Vieira, 2007, Corollary 2.3.9):

P (w)k = P (wk). (3.4)

It is standard to assume the existence of a multiplicative identity e. Note that P (e)w = w. A point
w ∈ V is invertible if and only if L(w) is invertible, and the inverse of w is the element w−1 ∈ V such
that w−1 = L(w)−1e (Faraut and Koranyi, 1998, Proposition II.2.2). (3.4) also holds for k = −1 if
w is invertible (Faraut and Koranyi, 1998, Proposition II.3.1).

Henceforth we consider only the finite dimensional Euclidean Jordan algebras. A Jordan algebra
V is Euclidean if ⟨wa ◦ wb, wc⟩ = ⟨wb, wa ◦ wc⟩ for all wa, wb, wc ∈ V .

We call Q a cone of squares on V if Q = {w ◦w : w ∈ V }. The cone Q is proper (closed, convex,
pointed, and solid) because V is Euclidean (and therefore formally real); see Papp and Alizadeh
(2013, Theorem 3.3) and Faraut and Koranyi (1998, Section III.1 and Proposition VIII.4.2). In
addition, Q is self-dual and homogeneous; see Manuel V.C. Vieira (2007, Proposition 2.5.8) and
Faraut and Koranyi (1998, Theorem III.2.1). For example, for V = Sd, the cone of squares is Q = Sd⪰.

For convenience, we often write a ⪰ b instead of a− b ∈ Q, or a ≻ b instead of a− b ∈ int(Q),
where Q is clear from context. If w ≻ 0, then w is invertible (Faraut and Koranyi, 1998, Theorem
III.2.1). Furthermore w ≻ 0 implies that w1/2 is well-defined and invertible, and P (w1/2) = P (w)1/2
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Manuel V.C. Vieira (2007, Proposition 2.5.11). This also implies by (3.4) (with k = −1) that
P (w−1/2) = P (w)−1/2.

3.2.1 Spectral decomposition

In a Euclidean Jordan algebra V , an idempotent is an element c ∈ V such that c2 = c. Two
idempotents c1, c2 are orthogonal if c1◦c2 = 0. Let d be the rank of V . c1, . . . , cd is a complete system
of orthogonal idempotents if c1, . . . , cd are all idempotents, pairwise orthogonal, and

∑
i∈JdK ci = e.

An idempotent is primitive if it is non-zero and cannot be written as the sum of two orthogonal
non-zero idempotents. A Jordan frame is a complete system of orthogonal idempotents, where each
idempotent is primitive. The number of elements in any Jordan frame is called the rank of V . For
example, the rank of Rd, Sd, or Hd is d.

For any w ∈ V , there exist unique real numbers (not necessarily distinct) w1, . . . , wd and a
unique Jordan frame c1, . . . , cd such that w has the spectral decomposition (Faraut and Koranyi,
1998, Theorem III.1.2):

w =
∑
i∈JdK

wici. (3.5)

We call w1, . . . , wd the eigenvalues of w. The determinant is det(w) =
∏
i∈JdKwi and the trace is

tr(w) =
∑

i∈JdKwi (Faraut and Koranyi, 1998, Section II.2, Page 29). For example, for V = Rd, the
Jordan frame is the standard unit vectors and w is its own vector of eigenvalues. For V = Sd, we can
think of the Jordan frame as the rank one PSD matrices from a full symmetric eigendecomposition.

Henceforth, we define the inner product on V as ⟨wa, wb⟩ = tr(wa ◦wb). Under this inner product,
P (w) is self-adjoint (Manuel V.C. Vieira, 2007, Page 27). Thus for w ∈ int(Q) and r1, r2 ∈ V , we
have:

⟨P (w)r1, r2⟩ = ⟨P (w1/2)r1, P (w
1/2)r2⟩ = ⟨r1, P (w)r2⟩. (3.6)

3.2.2 Peirce decomposition

We let c1, . . . , cd be a Jordan frame for V , and define for i, j ∈ JdK:

V (ci, λ) := {w : ci ◦ w = λw}, (3.7a)

Vi,i := V (ci, 1) = {tci : t ∈ R}, (3.7b)

Vi,j := V (ci,
1
2) ∩ V (cj ,

1
2). (3.7c)

V has the direct sum decomposition V = ⊕i,j∈JdK:i≤jVi,j (Faraut and Koranyi, 1998, Theorem IV.1.3).
For example, for V = Sd, let Ei,j be a matrix of zeros except in the (i, j)th position, and let ci = Ei,i;
then Vi,i = {tEi,i : t ∈ R} and Vi,j = {t(Ei,j + Ej,i) : t ∈ R}.

The Peirce decomposition allows us to write any r ∈ V as:

r =
∑

i,j∈JdK:i≤j

ri,j =
∑

i,j∈JdK:i<j

ri,j +
∑
i∈JdK

rici, (3.8)
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where ri = ⟨r, ci⟩ and ri,j ∈ Vi,j , ∀i, j ∈ JdK. Each ri,j is a projection of r onto Vi,j , where:

ri,i = rici = P (ci)r ∀i ∈ JdK, (3.9a)

ri,j = 4L(ci)L(cj)r = 4ci ◦ (cj ◦ r) ∀i, j ∈ JdK : j ̸= i. (3.9b)

Note that ri,j = rj,i, since L(ci) and L(cj) commute (Faraut and Koranyi, 1998, Lemma IV.1.3).
For example, let c1, . . . , cd be a Jordan frame for V = Sd and let r ∈ V ; then ri = circi and
ri,j = circj + cjrci, for i, j ∈ JdK.

We list some useful facts relating to compositions of projection operators (see Faraut and Koranyi
(1998, Theorem IV.2.2) and D. Sun and J. Sun (2008, Page 430)):

L(ci)L(cj)L(ck)L(cl) = 0 ∀i, j, k, l ∈ JdK : i ̸= j, k ̸= l, (i, j) ̸= (k, l), (3.10a)

L(ci)L(cj)P (ck) = 0 ∀i, j, k ∈ JdK : i ̸= j, (3.10b)

P (ck)L(ci)L(cj) = 0 ∀i, j, k ∈ JdK : i ̸= j, (3.10c)

(4L(ci)L(cj))
2 = 4L(ci)L(cj) ∀i, j ∈ JdK, (3.10d)

P (ci)
2 = P (ci) ∀i ∈ JdK, (3.10e)

and furthermore:
L(e) =

∑
i,j∈JdK:i<j

4L(ci)L(cj) +
∑
i∈JdK

P (ci). (3.11)

Given λi,j ̸= 0 for i, j ∈ JdK, consider an operator Λ : V → V of the form:

Λ :=
∑

i,j∈JdK:i<j

4λi,jL(ci)L(cj) +
∑
i∈JdK

λi,iP (ci). (3.12)

The inverse operator is given by:

Λ−1 =
∑

i,j∈JdK:i<j

4λ−1
i,j L(ci)L(cj) +

∑
i∈JdK

λ−1
i,i P (ci). (3.13)

It can be verified using (3.10) and (3.11) that for any r ∈ V , ΛΛ−1r = Λ−1Λr = r. For example, let
w =

∑
i∈JdKwici ∈ V be invertible and suppose that λi,j = wiwj for i, j ∈ JdK; then:

Λ =
∑

i,j∈JdK:i<j

4wiwjL(ci)L(cj) +
∑
i∈JdK

w2
i P (ci) = P (w), (3.14a)

Λ−1 =
∑

i,j∈JdK:i<j

4w−1
i w−1

j L(ci)L(cj) +
∑
i∈JdK

w−2
i P (ci) = P (w−1). (3.14b)

3.3 Spectral functions and derivatives

Let V be a Jordan algebra of rank d. A real-valued function f : Rd → R is symmetric if it is invariant
to the order of its inputs. A symmetric function f composed with an eigenvalue map λ : V → Rd

induces a spectral function φ : V → R such that φ(w) = f(λ(w)), where λ(w) = (w1, . . . , wd) is the
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eigenvalue vector of w (Baes, 2007, Definition 8). Note that φ is convex if and only if f is convex
(Davis, 1957).

In this section, we give expressions for certain derivatives and directional derivatives of φ that
are useful for the barrier oracles we derive in Section 3.5. We express these derivatives at a point
w ∈ V (satisfying certain assumptions as necessary below) with spectral decomposition (3.5), and
we let the direction be r ∈ V with Peirce decomposition (3.8). The gradient is ∇φ(w) ∈ V and
the second and third order directional derivatives are ∇2φ(w)[r] ∈ V and ∇3φ(w)[r, r] ∈ V . We
begin with the general nonseparable case in Section 3.3.1 before specializing for separable spectral
functions in Section 3.3.2 and finally for the important case of the negative log-determinant function
in Section 3.3.3.

3.3.1 The nonseparable case

Let ∇f , ∇2f , and ∇3f denote the derivatives of f evaluated at λ(w). We use subindices to denote
particular components of these derivatives. According to Baes (2007, Theorem 38) and D. Sun and
J. Sun (2008, Theorem 4.1), the gradient of φ at w is:

∇φ(w) =
∑
i∈JdK

(∇f)ici. (3.15)

Henceforth we assume the eigenvalues of w are all distinct for simplicity. The second order directional
derivative of φ in direction r is (D. Sun and J. Sun, 2008, Theorem 4.2):

∇2φ(w)[r] =
∑

i,j∈JdK:i<j

(∇f)i − (∇f)j
wi − wj

ri,j +
∑
i,j∈JdK

(∇2f)i,jricj . (3.16)

D. Sun and J. Sun (2008, Theorem 4.2) also generalize this expression to allow for non-distinct
eigenvalues.

To derive an expression for the third order directional derivative ∇3φ(w)[r, r], we let:

w(t) := w + tr =
∑
i∈JdK

wi(t)ci(t), (3.17)

where wi(t) is the ith eigenvalue of w(t). Note that ∇2φ(w)[r] = d
dt∇φ(w(t))|t=0 and ∇3φ(w)[r, r] =

d2

dt2
∇φ(w(t))|t=0. We let ∇f(t), ∇2f(t), and ∇3f(t) denote the derivatives of f evaluated at λ(w(t)).

Due to the chain rule and (3.16):

d

dt
∇φ(w(t)) = ∇2φ(w(t))[r] (3.18a)

=
∑

i,j∈JdK:i<j

(∇f(t))i − (∇f(t))j
wi(t)− wj(t)

ri,j(t) +
∑
i,j∈JdK

(∇2f(t))i,jri(t)cj(t). (3.18b)

We differentiate (3.18) once more. From Manuel VC Vieira (2016, Corollary 1 and Theorem 3.3)
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and D. Sun and J. Sun (2008, Equation 37), for i ∈ JdK we have:

d

dt
wi(t) = ri(t), (3.19a)

d

dt
ci(t) = si(t) :=

∑
j∈JdK:j ̸=i

ri,j(t)

wi(t)− wj(t)
. (3.19b)

Using the chain rule, (3.19a) implies:

d

dt
(∇f(t))i =

∑
k∈JdK

(∇2f(t))i,krk(t) ∀i ∈ JdK, (3.20a)

d

dt
(∇2f(t))i,j =

∑
k∈JdK

(∇3f(t))i,j,krk(t) ∀i, j ∈ JdK. (3.20b)

Applying the chain and product rules, we have:

d

dt

1

wi(t)− wj(t)
=

rj(t)− ri(t)
(wi(t)− wj(t))2

∀i, j ∈ JdK : i ̸= j, (3.21a)

d

dt
ri,j(t) =

d

dt
(4ci(t) ◦ (cj(t) ◦ r)) (3.21b)

= 4ci(t) ◦ (sj(t) ◦ r) + 4si(t) ◦ (cj(t) ◦ r) ∀i, j ∈ JdK : i ̸= j, (3.21c)
d

dt
⟨ci(t), r⟩cj(t) = ⟨si(t), r⟩cj(t) + ri(t)sj(t) ∀i, j ∈ JdK. (3.21d)

Finally, letting si := si(0) for all i ∈ JdK, these results imply that:

∇3φ[r, r] =
d2

dt2
∇φ(w(t))

∣∣
t=0

(3.22a)

=
∑

i,j∈JdK:i<j

(∇f)i − (∇f)j
wi − wj

(
4ci ◦ (sj ◦ r) + 4si ◦ (cj ◦ r)−

ri − rj
wi − wj

ri,j

)
+

∑
i,j,k∈JdK:i<j

(∇2f)i,k − (∇2f)j,k
wi − wj

rkri,j +∑
i,j∈JdK

(∇2f)i,j(⟨si, r⟩cj + risj) +
∑

i,j,k∈JdK

(∇3f)i,j,krirkcj

(3.22b)

=
∑

i,j∈JdK:i<j

(∇f)i − (∇f)j
wi − wj

(
4ci ◦ (sj ◦ r) + 4si ◦ (cj ◦ r)−

ri − rj
wi − wj

ri,j

)
+

∑
i,j∈JdK

(∇2f)i,j(2rjsi + ⟨si, r⟩cj) +
∑

i,j,k∈JdK

(∇3f)i,j,krirkcj .
(3.22c)

The derivative expressions simplify significantly for V = Rd. For V = Sd, the form of (3.16) is
well-known (Faybusovich and Zhou, 2021) and the form of (3.22c) appears in Sendov (2007).
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3.3.2 The separable case

The spectral function φ induced by f is separable if f is a separable function, i.e. f(λ) =
∑

i∈JdK h(λi)

for λ ∈ Rd and some function h : R→ R. For convenience, if w ∈ V , we also define h : V → V as
h(w) :=

∑
i∈JdK h(wi)ci. This allows us to write φ(w) = tr(h(w)) =

∑
i∈JdK h(λi). Note that φ is

convex if and only if h is convex. For example, if h(w) = − log(w) then φ(w) = tr(− log(w)) =

− logdet(w); we consider this special case in Section 3.3.3.
We specialize the derivatives from (3.15), (3.16) and (3.22c), maintaining the assumption of

distinct eigenvalues. Since (∇2f)i,j = (∇3f)i,j,k = 0 unless i = j = k, we have:

∇φ(w) =
∑
i∈JdK

∇h(wi)ci, (3.23a)

∇2φ(w)[r] =
∑

i,j∈JdK:i<j

∇h(wi)−∇h(wj)
wi − wj

4ci ◦ (cj ◦ r) +
∑
i∈JdK

∇2h(wi)P (ci)r, (3.23b)

∇3φ(w)[r, r] =
∑

i,j∈JdK:i<j

∇h(wi)−∇h(wj)
wi − wj

(
4ci ◦ (sj ◦ r) + 4si ◦ (cj ◦ r)−

ri − rj
wi − wj

ri,j

)
+
∑
i∈JdK

∇2h(wi)(2risi + ⟨si, r⟩ci) +
∑
i∈JdK

∇3h(wi)r
2
i ci.

(3.23c)

3.3.3 The negative log-determinant case

The negative log-determinant function φ(w) = − logdet(w) is a separable spectral function. We let
w ≻ 0 and drop the assumption of distinct eigenvalues. For convenience, we let r̂ := P (w−1/2)r ∈ V .
First, note that (similar to Manuel V.C. Vieira (2007, Lemma 3.3.4)):

⟨w−1, r⟩ = ⟨P (w−1/2)e, r⟩ = ⟨e, P (w−1/2)r⟩ = tr(r̂), (3.24)

by (3.6). Due to Faraut and Koranyi (1998, Proposition II.2.3):

∇w(tr(r̂)) = ∇w(w−1)[r] = −P (w−1)r. (3.25)

Adapting the result in Faybusovich and Tsuchiya (2017, Lemma 3.4):

∇w(P (w−1)r)[r] = −2P (w−1/2)r̂2. (3.26)

Now, the gradient of φ is (Faraut and Koranyi, 1998, Propositions III.4.2(ii)):

∇φ(w) = −w−1, (3.27)

so from (3.25) and (3.26), the second and third order directional derivatives are:

∇2φ(w)[r] = P (w−1)r, (3.28a)
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∇3φ(w)[r, r] = −2P (w−1/2)(P (w−1/2)r)2. (3.28b)

Note that unlike the separable spectral function case in Section 3.3.2, here we do not need the
explicit eigenvalues of w.

3.4 Cones and barrier functions

In this chapter we are concerned with a class of proper cones that can be characterized as follows:

K := cl{ũ ∈ E : ζ(ũ) ≥ 0} ⊂ Ṽ, (3.29)

where ζ : E → R is a concave, (degree one) homogeneous function and E is some convex cone in the
space Ṽ . In particular, we define ζ in terms of a C3-smooth spectral function φ that is defined on
the interior of a cone of squares Q of a Jordan algebra V of rank d.

3.4.1 The homogeneous case

First, we suppose that φ is convex and homogeneous. Then ζ(u,w) := u − φ(w) is concave and
homogeneous, and we let E := R× int(Q) and Ṽ := R× V . This defines a convex cone that is the
closure of the epigraph set of φ:

Kh := cl{(u,w) ∈ R× int(Q) : u ≥ φ(w)}. (3.30)

Note that if φ is concave, we can analogously define a cone from the hypograph set of φ. In
Section 3.7, we consider the root-determinant cone, which is the hypograph of the concave root-
determinant function. To check membership in int(Kh), we first determine whether w ∈ int(Q)
(which is equivalent to positivity of the eigenvalues), and if so, whether ζ(ũ) > 0.

3.4.2 The non-homogeneous case

Now we suppose that φ is convex and non-homogeneous. We define the perspective function of
φ, perφ : R> × int(Q) → R, as (perφ)(v, w) := vφ(v−1w). This is a homogeneous and convex
function (Boyd and Vandenberghe, 2004, Section 3.2.6). We let ζ(u, v, w) := u− (perφ)(v, w), with
E := R× R> × int(Q) and Ṽ := R× R× V . This defines a convex cone that is the closure of the
epigraph set of the perspective function of φ:

Kp := cl{(u, v, w) ∈ R× R> × int(Q) : u ≥ vφ(v−1w)}. (3.31)

Equivalently, we can view Kp as the closed conic hull of the epigraph set of φ (Nesterov and
Nemirovski, 1994, Chapter 5). In Section 3.6, we consider the special case where φ is a separable
spectral function with matrix monotone first derivative. The membership check for int(Kp) is similar
to that of int(Kh) except we first check whether v > 0.
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3.4.3 Dual cones

A proper cone is primitive if it cannot be written as a Cartesian product of two or more lower
dimensional proper cones. The dual cone of a primitive, proper cone K is another primitive, proper
cone:

K∗ := {z : ⟨s, z⟩ ≥ 0, ∀s ∈ K}. (3.32)

Recall that when K is defined through Hypatia’s generic cone interface, both K and K∗ become
available for constructing conic models.

We assume that φ is convex, and we derive the dual cones of the epigraph cones Kh and Kp
(these steps can be adapted for analogous hypograph cones if φ is concave). We define the convex
conjugate function φ∗ : V → R ∪∞ of φ as the modified Legendre-Fenchel transformation (similar
to Zhang (2004, Page 483)):

φ∗(r) = supw∈dom(φ){−⟨w, r⟩ − φ(w)}, (3.33)

which is a convex function. The conjugate of a symmetric function is also a symmetric function
(Baes, 2007, Lemma 29), and the conjugate of a spectral function induced by a symmetric function
f is the spectral function induced by f∗ (Baes, 2007, Theorem 30). Thus for φ(w) = f(λ(w)) we
have the conjugate function φ∗(w) = f∗(λ(w)).

For the epigraph-perspective cone Kp in (3.31), Zhang (2004, Theorem 3.2) and Rockafellar
(2015, Theorem 14.4) derive the dual cone K∗

p:

K∗
p = cl{(u, v, w) ∈ R> × R× V : v ≥ uφ∗(u−1w)}. (3.34)

We can view K∗
p as the epigraph set of the perspective function of the conjugate of φ, but with

the epigraph and perspective components swapped (compare to (3.31)). Depending on the natural
domain of φ∗, the w component of K∗

p is not necessarily restricted to lie in Q; in Section 3.6.2 we
discuss several example spectral functions, some of which have conjugates defined on all V and
others only on int(Q).

For Kh in (3.30), we derive the dual cone K∗
h as follows. Since φ is homogeneous in this case,

(perφ)(v, w) = vφ(v−1w) = φ(w). Therefore the corresponding perspective cone Kp for φ is not a
primitive cone, as it can be written as a (permuted) Cartesian product of R≥ and Kh:

Kp = cl{(u, v, w) ∈ Ṽ : v ∈ R≥, (u,w) ∈ Kh}. (3.35)

Since the dual cone of a Cartesian product of cones is the Cartesian product of their dual cones, we
have (since R∗

≥ = R≥):

K∗
p = cl{(u, v, w) ∈ Ṽ : v ∈ R≥, (u,w) ∈ K∗

h}. (3.36)

By (Lasserre, 1998, Theorem 2.1), the homogeneity of φ implies that φ∗ can only take the values
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zero or infinity. Hence by (3.34), we know:

K∗
p = cl{(u, v, w) ∈ R> × R× V : v ≥ 0, uφ∗(u−1w) <∞}. (3.37)

Since (3.36) and (3.37) describe the same cone, we can conclude that the dual cone of Kh is:

K∗
h = cl{(u,w) ∈ R> × V : φ∗(u−1w) <∞}. (3.38)

3.4.4 Barrier functions and oracles

A logarithmically homogeneous barrier (LHB) function Γ for a proper cone K ⊂ Ṽ is C2-smooth
and satisfies Γ(ũi)→∞ along every sequence ũi ∈ int(K) converging to the boundary of K, and:

Γ(θũ) = Γ(ũ)− ν log(θ) ∀ũ ∈ int(K), θ ∈ R>, (3.39)

for some ν ≥ 0 (Nesterov and Nemirovski, 1994, Definition 2.3.2). If Γ is also self-concordant, then
it is an LHSCB with parameter ν ≥ 1 (or a ν-LHSCB) for K. For self-concordance, Γ must be
C3-smooth and satisfy (Nesterov and Nemirovski, 1994, Definition 2.1.1):

|∇3Γ(ũ)[p̃, p̃, p̃]| ≤ 2(∇2Γ(ũ)[p̃, p̃])3/2 ∀ũ ∈ int(K), p̃ ∈ Ṽ. (3.40)

The best known interior point algorithms need at most O(
√
ν log(1/ε)) iterations to converge to a

solution within ε tolerance (Nesterov, Todd, and Ye, 1997).
The LHB we consider for a cone of the form (3.29) is:

Γ(ũ) := − log(ζ(ũ)) + Ψ(ũ), (3.41)

where Ψ can be thought of as an LHSCB for the domain of ζ or cl(E). The negative logarithm
function − log is the standard LHSCB for R≥, with parameter ν = 1. Similarly, the spectral function
− logdet (see Section 3.3.3) is the standard LHSCB for a cone of squares Q of V , with ν = d

(the rank of V ). For Kh we let Ψ(ũ) = − logdet(w), hence Γ has parameter ν = 1 + d. Since an
LHSCB for a Cartesian product of cones is the sum of LHSCBs for the primitive cones, for Kp we
let Ψ(ũ) = − log(v)− logdet(w), hence Γ has parameter ν = 2+ d. Note that although Γ is an LHB,
it is not necessarily self-concordant; in Sections 3.6.4 and 3.7.3 we prove that Γ is an LHSCB for
some useful special cases.

We now define four barrier oracles that Hypatia’s IPM uses; for ideal performance, these oracle
implementations should be efficient and numerically stable. For an interior point ũ ∈ int(K) and a
direction p̃ ∈ Ṽ , the gradient g, the Hessian product H, the inverse Hessian product H̄, and the
third order directional derivative T are:

g := ∇Γ(ũ), (3.42a)

H := ∇2Γ(ũ)[p̃], (3.42b)

H̄ := (∇2Γ(ũ))−1[p̃], (3.42c)

103



T := ∇3Γ(ũ)[p̃, p̃]. (3.42d)

Note g,H, H̄, T ∈ Ṽ . In later sections, we use subscripts to refer to subcomponents of these oracles,
for example the w component of the gradient oracle is gw := ∇wΓ(ũ) ∈ V . Ideally, H applies the
positive definite linear operator ∇2Γ(ũ) : Ṽ → Ṽ without constructing an explicit Hessian, and
similarly, H̄ applies the (unique) inverse operator (∇2Γ(ũ))−1 : Ṽ → Ṽ without constructing or
factorizing an explicit Hessian.

We note that for the standard LHSCB Ψ for a cone of squares, efficient and numerically stable
procedures for these four oracles are well-known. The same cannot be said for the LHB Γ currently.
In Section 3.5, we derive these oracles for Kp (noting that they can be adapted easily for Kh). In the
special cases for which we show Γ is an LHSCB, the oracles can be computed particularly efficiently.

3.5 Barrier oracles for epigraph-perspective cones

We consider the epigraph-perspective cone Kp defined in (3.31). Recall that we let p̃ = (p, q, r) ∈
R× R× V and ũ = (u, v, w) ∈ int(Kp), and we define ζ and Γ : int(Kp)→ R from (3.41) as:

ζ(ũ) := u− vφ(v−1w), (3.43a)

Γ(ũ) := − log(ζ(ũ))− log(v)− logdet(w). (3.43b)

In this section, we derive expressions and evaluation procedures for the g, H, T , and H̄ oracles
(defined in Section 3.4.4) corresponding to the LHB Γ for Kp. We note that the oracles for Kh in
(3.30) are simpler because no perspective operation is needed for a homogeneous φ; they can be
obtained by fixing v = 1 and q = 0 and ignoring the v components in the oracle expressions in this
section.

Without assuming any particular form for φ, we write g, H, and T in Section 3.5.1 and H̄ in
Section 3.5.2 in terms of the derivatives of φ. If φ is a spectral function, these derivatives can
be computed using the expressions from Section 3.3. In the case that φ is a separable spectral
function (see Section 3.3.2), we derive a more specialized procedure for H̄ in Section 3.5.3, which is
no more expensive than H. Finally, in Section 3.5.4, we specialize the four oracles for the negative
log-determinant function (i.e. φ(w) = − logdet(w); see Section 3.3.3) and we discuss implementations.

3.5.1 Derivatives

First, we express the derivatives of ζ in terms of those of φ. We define the function µ : R>× int(Q)→
int(Q) and its first directional derivative ξ ∈ V in the direction (q, r) as:

µ(v, w) := v−1w, (3.44a)

ξ := ∇µ(v, w)[(q, r)] = ∇vµ(v, w)q +∇wµ(v, w)[r] = v−1(r − qµ(v, w)). (3.44b)
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For convenience, we fix the constants µ := µ(v, w), φ := φ(µ), and ζ := ζ(ũ). Let ∇φ, ∇2φ, and
∇3φ be the derivatives of φ evaluated at µ, and let ∇ζ, ∇2ζ, and ∇3ζ be the derivatives of ζ
evaluated at ũ. Using (3.44), the directional derivatives of ζ can be written compactly as:

∇uζ = 1, (3.45a)

∇vζ = −φ+∇φ[µ], (3.45b)

∇wζ = −∇φ, (3.45c)

∇ζ[p̃] = p− qφ− v∇φ[ξ], (3.45d)

(∇2ζ[p̃])v = ∇2φ[ξ, µ], (3.45e)

(∇2ζ[p̃])w = −∇2φ[ξ], (3.45f)

∇2ζ[p̃, p̃] = −v∇2φ[ξ, ξ], (3.45g)

(∇3ζ[p̃, p̃])v = ∇3φ[ξ, ξ, µ] +∇2φ[ξ, ξ]− 2v−1q∇2φ[ξ, µ], (3.45h)

(∇3ζ[p̃, p̃])w = 2v−1q∇2φ[ξ]−∇3φ[ξ, ξ], (3.45i)

∇3ζ[p̃, p̃, p̃] = −v∇3φ[ξ, ξ, ξ] + 3q∇2φ[ξ, ξ]. (3.45j)

Using (3.45), we now derive the directional derivatives of Γ. For convenience, we let ∇Γ, ∇2Γ,
∇3Γ be the derivatives of Γ evaluated at ũ. We define:

σ := −∇vζ = φ−∇φ[µ] ∈ R. (3.46)

The components of the gradient g of Γ are:

gu = −ζ−1, (3.47a)

gv = ζ−1σ − v−1, (3.47b)

gw = ζ−1∇φ− w−1. (3.47c)

Note (3.47c) follows from (3.27). Differentiating (3.47), the Hessian components are:

∇2
u,uΓ = ζ−2 > 0, (3.48a)

∇2
v,uΓ = −ζ−2σ ∈ R, (3.48b)

∇2
w,uΓ = −ζ−2∇φ ∈ V, (3.48c)

∇2
v,vΓ = v−2 + ζ−2σ2 + v−1ζ−1∇2φ[µ, µ] > 0, (3.48d)

∇2
w,vΓ = ζ−2σ∇φ− v−1ζ−1∇2φ[µ] ∈ V. (3.48e)

Differentiating (3.47c) in the direction r and using (3.25):

∇2
w,wΓ[r] = ζ−2∇φ[r]∇φ+ v−1ζ−1∇2φ[r] + P (w−1)r ∈ V. (3.49)
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Let:
χ := ζ−1(p− qσ −∇φ[r]) ∈ R. (3.50)

The components of the Hessian product H are:

Hu = ζ−1χ, (3.51a)

Hv = −ζ−1σχ− ζ−1∇2φ[ξ, µ] + v−2q, (3.51b)

Hw = −ζ−1χ∇φ+ ζ−1∇2φ[ξ] + P (w−1)r. (3.51c)

Let:
κ := 2ζ−1(χ+ v−1q)∇2φ[ξ]− ζ−1∇3φ[ξ, ξ] ∈ V. (3.52)

The components of the third order directional derivative T are:

Tu = −2ζ−1χ2 − vζ−2∇2φ[ξ, ξ], (3.53a)

Tv = −Tuσ + ⟨κ, µ⟩ − ζ−1∇2φ[ξ, ξ]− 2q2v−3, (3.53b)

Tw = −Tu∇φ− κ− 2P (w−1/2)(P (w−1/2)r)2. (3.53c)

Note (3.53c) follows from (3.26).

3.5.2 Inverse Hessian operator

The Hessian of Γ at any point ũ ∈ int(Kp) is a positive definite linear operator and hence invertible.
By treating the components of the Hessian in (3.48) and (3.49) analogously to blocks of a positive
definite matrix, we derive the inverse operator. For convenience, we let:

Yu := (∇2
w,wΓ)

−1∇2
w,uΓ, (3.54a)

Yv := (∇2
w,wΓ)

−1∇2
w,vΓ, (3.54b)

Zu,u := ∇2
u,uΓ− ⟨∇2

w,uΓ, Yu⟩, (3.54c)

Zv,u := ∇2
v,uΓ− ⟨∇2

w,uΓ, Yv⟩, (3.54d)

Zv,v := ∇2
v,vΓ− ⟨∇2

w,vΓ, Yv⟩. (3.54e)

Note Yu, Yv ∈ V . We let Z be:

Z :=

[
Zu,u Zv,u

Zv,u Zv,v

]
∈ S2≻, (3.55)

and its inverse is:

Z̄ := Z−1 =
1

Zu,uZv,v − Z2
v,u

[
Zv,v −Zv,u
−Zv,u Zu,u

]
∈ S2≻. (3.56)

It can be verified (for example, by analogy to the block symmetric matrix inverse formula) that the
inverse Hessian product oracle H̄ in (3.42c) is:

H̄u = Z̄u,u(p− ⟨Yu, r⟩) + Z̄v,u(q − ⟨Yv, r⟩), (3.57a)
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H̄v = Z̄v,u(p− ⟨Yu, r⟩) + Z̄v,v(q − ⟨Yv, r⟩), (3.57b)

H̄w = −H̄uYu − H̄vYv + (∇2
w,wΓ)

−1r. (3.57c)

Hence computing H̄ is essentially only as difficult as applying the positive definite linear operator
(∇2

w,wΓ)
−1. We are not aware of a simple expression for (∇2

w,wΓ)
−1 in general, but we explore the

special cases of separable spectral functions in Section 3.5.3, the negative log-determinant function
in Section 3.5.4, and the root-determinant function in Section 3.7.4.

3.5.3 Inverse Hessian operator for the separable spectral case

Suppose w ≻ 0 has the spectral decomposition (3.5), i.e. w has the eigenvalues w1, . . . , wd > 0 and
the Jordan frame c1, . . . , cd. As in Section 3.3.2, we assume distinct eigenvalues for simplicity. In
the special case where φ is a convex separable spectral function, i.e. φ(w) =

∑
i∈JdK h(wi) for some

convex h : R> → R, we show how to compute H̄ as efficiently as Hessian product oracle H. For all
i ∈ JdK, we let hi, (∇h)i, (∇2h)i, and (∇3h)i denote the value and derivatives of h evaluated at µ.
We define mi,j ∈ R for i, j ∈ JdK as:

mi,j :=

ζ−1 (∇h)i−(∇h)j
wi−wj

+ w−1
i w−1

j i ̸= j,

ζ−1v−1(∇2h)i + w−2
i i = j.

(3.58)

Since h is convex, mi,j > 0,∀i, j ∈ JdK. Let M : V → V be the self-adjoint linear operator:

M := v−1ζ−1∇2φ+ P (w−1) =
∑

i,j∈JdK:i<j

4mi,jL(ci)L(cj) +
∑
i∈JdK

mi,iP (ci). (3.59)

Using (3.13), we have the self-adjoint inverse operator of M :

M−1 =
∑

i,j∈JdK:i<j

4m−1
i,j L(ci)L(cj) +

∑
i∈JdK

m−1
i,i P (ci). (3.60)

Substituting (3.59) into (3.49), we have:

∇2
w,wΓ[r] = ζ−2∇φ[r]∇φ+Mr. (3.61)

Note that the first term in (3.61) is analogous to the application (to r) of a low-rank update to M ,
and that M−1 in (3.60) is easy to apply. By analogy to the Sherman-Morrison-Woodbury formula
(Deng, 2011, Theorem 1.1), we can derive a simple expression for the inverse operator (∇2

w,wΓ)
−1r.

We let:

α :=M−1∇φ =
∑
i∈JdK

m−1
i,i (∇h)ici ∈ V, (3.62a)

γ := v−2ζ−1M−1∇2φ[w] = v−2ζ−1
∑
i∈JdK

m−1
i,i (∇

2h)iwici ≻ 0. (3.62b)
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Noting that γ,w−1 ≻ 0 implies ⟨γ,w−1⟩ > 0, we define the scalar constants:

k1 := ζ2 + ⟨∇φ, α⟩ > 0, (3.63a)

k2 := σ + ⟨∇φ, γ⟩ = σ + v−2ζ−1⟨∇2φ[w], α⟩, (3.63b)

k3 := v−2 + v−2ζ−1⟨∇2φ[w], µ− γ⟩ = v−2 + v−1⟨γ,w−1⟩ > 0. (3.63c)

Now using the Sherman-Morrison-Woodbury formula:

(∇2
w,wΓ)

−1r =M−1r − ζ−2⟨M−1∇φ, r⟩
1 + ζ−2⟨M−1∇φ,∇φ⟩

M−1∇φ (3.64a)

=M−1r − k−1
1 ⟨α, r⟩α. (3.64b)

Substituting (3.48) and (3.64) into (3.54), we have:

Yu = (∇2
w,wΓ)

−1(−ζ−2∇φ) (3.65a)

= −ζ−2α+ ζ−2k−1
1 ⟨α,∇φ⟩α (3.65b)

= −k−1
1 α, (3.65c)

Yv = (∇2
w,wΓ)

−1(ζ−2σ∇φ− v−1ζ−1∇2φ[µ]) (3.65d)

= −σYu − v−2ζ−1(∇2
w,wΓ)

−1∇2φ[w] (3.65e)

= σk−1
1 α− γ + v−2ζ−1k−1

1 ⟨α,∇
2φ[w]⟩α (3.65f)

= k−1
1 k2α− γ, (3.65g)

Zu,u = ζ−2 − ⟨∇2
w,uΓ, Yu⟩ (3.65h)

= ζ−2 − ζ−2k−1
1 ⟨∇φ, α⟩ (3.65i)

= k−1
1 , (3.65j)

Zv,u = −ζ−2σ − ⟨∇2
w,uΓ, Yv⟩ (3.65k)

= −ζ−2(σ − ⟨∇φ, k−1
1 k2α− γ⟩) (3.65l)

= −ζ−2(σ − k−1
1 k2(k1 − ζ2) + k2 − σ) (3.65m)

= −k−1
1 k2, (3.65n)

and:

Zv,v = ∇2
v,vΓ− ⟨∇2

w,vΓ, Yv⟩ (3.66a)

= ∇2
v,vΓ + σ⟨∇2

w,uΓ, Yv⟩+ v−2ζ−1⟨∇2φ[w], Yv⟩ (3.66b)

= ∇2
v,vΓ + σ(k−1

1 k2 − ζ−2σ) + v−2ζ−1⟨∇2φ[w], Yv⟩ (3.66c)

= v−2 + v−3ζ−1∇2φ[w,w] + σk−1
1 k2 + v−2ζ−1⟨∇2φ[w], Yv⟩ (3.66d)

= v−2 + v−3ζ−1∇2φ[w,w] + σk−1
1 k2 + k−1

1 k2(k2 − σ)− v−2ζ−1⟨∇2φ[w], γ⟩ (3.66e)

= v−2 + k−1
1 k22 + v−2ζ−1⟨∇2φ[w], µ− γ⟩ (3.66f)

= k3 + k−1
1 k22. (3.66g)
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For Z in (3.55), we have det(Z) = k−1
1 k3, so its inverse Z̄ in (3.56) is:

Z̄u,u = k1(k3 + k−1
1 k22)k

−1
3 = k1 + k22k

−1
3 , (3.67a)

Z̄u,v = k2k
−1
3 , (3.67b)

Z̄v,v = k−1
3 . (3.67c)

Finally, we substitute (3.65) to (3.67) into (3.57) to derive the inverse Hessian product H̄. We let:

c1 := p− ⟨Yu, r⟩ = p+ k−1
1 ⟨α, r⟩, (3.68a)

c2 := q − ⟨Yv, r⟩ = q − k−1
1 k2⟨α, r⟩+ ⟨γ, r⟩. (3.68b)

For convenience, we derive H̄v before H̄u and H̄w:

H̄v = Z̄u,vc1 + Z̄v,vc2 (3.69a)

= k−1
3 (k2c1 + c2) (3.69b)

= k−1
3 (k2p+ q + ⟨γ, r⟩), (3.69c)

H̄u = Z̄u,uc1 + Z̄u,vc2 (3.69d)

= (Z̄u,u − Z̄u,vk2)c1 + Z̄u,vk3H̄v (3.69e)

= k1p+ k2H̄v + ⟨α, r⟩, (3.69f)

H̄w = −H̄uYu − H̄vYv + (∇2
w,w)

−1r (3.69g)

= H̄uk
−1
1 α− H̄v(k

−1
1 k2α− γ) +M−1r − k−1

1 ⟨α, r⟩α (3.69h)

= pα+ H̄vγ +M−1r. (3.69i)

In Section 3.8.5, we compare the efficiency and numerical performance of the closed form formula
for H̄ in (3.69) against a naive approach to computing H̄ that performs a Cholesky factorization of
an explicit Hessian matrix and uses a direct linear solve. The closed form formula is faster and more
scalable, more memory-efficient, more reliable to compute (as the Cholesky decomposition can fail),
and more numerically accurate.

3.5.4 Oracles for the log-determinant case

We now specialize the oracles derived in Sections 3.5.1 and 3.5.3 for the separable spectral function
φ(w) = − logdet(w) = −

∑
i∈JdK log(wi). In Section 3.6, we show that Γ is an LHSCB in this case.

We let:
ξ̂ := P (w−1/2)ξ = v−1P (w−1/2)(−v−1qw + r) = v−1(−v−1qe+ r̂) ∈ V. (3.70)

Using (3.27), (3.28a) and (3.28b), we have:

∇φ = −µ−1 = −vP (w−1/2)e, (3.71a)

∇2φ[ξ] = v2P (w−1)ξ = v2P (w−1/2)ξ̂, (3.71b)
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∇3φ[ξ, ξ] = −2v3P (w−1/2)ξ̂2. (3.71c)

The constants from (3.46) and (3.50) have the form:

σ = φ+ d, (3.72a)

χ = ζ−1(p− qσ + v tr(r̂)). (3.72b)

From (3.47), the w component of the gradient is:

gw = −(1 + vζ−1)w−1. (3.73)

From (3.51), the v and w components of the Hessian product are:

Hv = −ζ−1σχ− vζ−1 tr(ξ̂) + v−2q, (3.74a)

Hw = P (w−1/2)(vζ−1χe+ v2ζ−1ξ̂ + r̂). (3.74b)

From (3.53), the third order directional derivative is:

Tu = −2ζ−1χ2 − v3ζ−2 tr(ξ̂2), (3.75a)

Tv = −Tuσ + vζ−1(2(χ+ v−1q) tr(ξ̂) + v tr(ξ̂2))− 2v−3q2, (3.75b)

Tw = P (w−1/2)(Tuve− 2ζ−1v2((χ+ v−1q)ξ̂ + vξ̂2)− 2r̂2). (3.75c)

We derive the inverse Hessian product H̄ by specializing the separable case in (3.69). We let:

ř := P (w1/2)r ∈ V, (3.76a)

θ := v2(ζ + (1 + d)v)−1. (3.76b)

From (3.62) and (3.63), we have:

M−1 = ζ(ζ + v)−1P (w), (3.77a)

α = −vζ(ζ + v)−1w, (3.77b)

γ = (ζ + v)−1w, (3.77c)

k1 = ζ2 + dv2ζ(ζ + v)−1, (3.77d)

k2 = φ+ dζ(ζ + v)−1, (3.77e)

k−1
3 = (ζ + v)θ. (3.77f)

For convenience, we derive H̄v before H̄u and H̄w as in (3.69):

H̄v = k−1
3 (k2p+ q + ⟨γ, r⟩) (3.78a)

= (ζ + v)θ((φ+ dζ(ζ + v)−1)p+ q + ⟨r, w⟩(ζ + v)−1) (3.78b)

= θ((ζ + v)(φp+ q) + dζp+ tr(ř)), (3.78c)

H̄u = k1p+ (φ+ dζ(ζ + v)−1)H̄v + ⟨α, r⟩ (3.78d)
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= (ζ2 + dv2ζ(ζ + v)−1)p+ (φ+ dζ(ζ + v)−1)H̄v + ⟨−vζ(ζ + v)−1w, r⟩ (3.78e)

= ζ(ζ + v)−1(dv2p+ dH̄v − v⟨w, r⟩) + ζ2p+ φH̄v, (3.78f)

H̄w = pα+ H̄vγ +M−1r (3.78g)

= −pvζ(ζ + v)−1w + H̄v(ζ + v)−1w + ζ(ζ + v)−1P (w)r (3.78h)

= (ζ + v)−1P (w1/2)((−ζpv + H̄v)e+ ζř). (3.78i)

Recall that in Section 3.5.3, we used the simplifying assumption of distinct eigenvalues, but for
the negative log-determinant case this is not necessary. Note that if it is possible to apply P (w1/2)

and P (w−1/2) without accessing the eigenvalues of w, then all four oracles can be computed without
an explicit eigendecomposition. For example, in our implementation for V = Sd and V = Hd, only a
Cholesky factorization of w is needed. This is unlike the more general separable spectral function
case, where the explicit eigenvalues of w are needed.

3.6 Matrix monotone derivative cones

After defining the matrix monotone property of a function in Section 3.6.1, we introduce the matrix
monotone derivative cone KMMD in Section 3.6.2. KMMD is a special case of the epigraph-perspective
cone Kp with a separable spectral function φ. In Section 3.6.4, we prove that our barrier function Γ

for KMMD is an LHSCB.

3.6.1 Matrix monotonicity

A function f is matrix monotone (or operator monotone) if wa ⪰ wb ⪰ 0 implies f(wa) ⪰ f(wb) for
all wa, wb ∈ Sd for all integers d. The following integral representation result is attributed to Löwner
(1934) (see e.g. Kwong (1989, Theorem 1) and Furuta (2008, Theorem L)). A function f : R> → R
is matrix monotone in R> if and only if it has the representation:

f(x) = α+ βx+

∫ ∞

0

x

x+ t
dρ(t) = α+ βx+

∫ ∞

0

(
1− t

x+ t

)
dρ(t), (3.79)

where α ∈ R, β ∈ R≥ and ρ is a positive measure on R> such that
∫∞
0 (1 + t)−1 dρ(t) <∞.

This result implies that, for a cone of squares Q of a Jordan algebra, and for w ∈ int(Q) with
the spectral decomposition w =

∑
i∈JdKwici, we have:

f(w) =
∑
i∈JdK

f(wi)ci (3.80a)

= αe+ βw +

∫ ∞

0

∑
i∈JdK

(
1− t

wi + t

)
ci dρ(t) (3.80b)

= αe+ βw +

∫ ∞

0
(e− t(w + te)−1) dρ(t). (3.80c)
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This is similar to the representation in Faybusovich and Tsuchiya (2017, Page 1520).

3.6.2 Cone definition

Let h : R> → R be a convex C3-smooth function. We assume that that the first derivative of h, ∇h,
is a matrix monotone function. This also implies that h is convex. We call such functions matrix
monotone derivative (MMD) functions.

In Table 3.1, we give some common examples of MMD functions, with abbreviated names in
the first column. We also give ∇h, the domain of the convex conjugate h∗ (defined in (3.33)), and
a closed form formula for h∗. Due to Carlen (2010, Theorem 2.6 (Löwner-Heinz Theorem)), the
functions x → log(x), x → −xp for p ∈ [−1, 0], and x → xp for p ∈ [0, 1] are matrix monotone.
This implies that in Table 3.1, each function in the ∇h column is matrix monotone. Note that
NegSqrt is equivalent to NegPower for p = 1/2; we highlight NegSqrt as an interesting case, for
which the conjugate h∗ is a positive rescaling of the inverse function. Note we exclude the case p = 1

in NegPower and Power because it is homogeneous (h is linear). More examples of matrix monotone
functions can be found in Kwong (1989) and Furuta (2008).

Table 3.1: Examples of MMD functions. We let q := p/(p− 1), which gives q ∈ (−∞, 0) for p ∈ (0, 1)
in the NegPower case, or q ∈ [2,∞) for p ∈ (1, 2] in the Power case. We also let x− := max(−x, 0)
in the Power case.

MMD function h ∇h dom(h∗) h∗

NegLog − log(x) −x−1 R> −1− log(x)
NegEntropy x log(x) 1 + log(x) R exp(−1− x)

NegSqrt −
√
x −1

2x
−1/2 R> 1

4x
−1

NegPower, p ∈ (0, 1) −xp −pxp−1 R≥ −(p− 1)(x/p)q

Power, p ∈ (1, 2] xp pxp−1 R (p− 1)(x−/p)
q

Suppose Q is the cone of squares of a Jordan algebra V with rank d. Let φ : int(Q)→ R be the
C3-smooth function φ(w) = tr(h(w)) =

∑
i∈JdK h(wi), which is a convex separable spectral function

(see Section 3.3.2). As in Section 3.4.2, we let ũ = (u, v, w) ∈ E = R× R> × int(Q). The function
ζ : E → R has the form:

ζ(ũ) := u− v tr(h(v−1w)). (3.81)

We define the matrix monotone derivative cone KMMD, a special case of the epigraph-perspective
cone Kp in (3.31), as:

KMMD := cl{ũ ∈ E : u ≥ v tr(h(v−1w))}, (3.82)

which is a proper cone. Note that the negative log-determinant cone, whose barrier function we
examined in Section 3.5.4, is a special case of KMMD where h is the NegLog function from Table 3.1.
For the separable case, the convex conjugate φ∗ : V → R ∪∞ (see (3.33)) of φ is φ∗(r) = tr(h∗(r)).
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Figure 3.1: Graphs of some MMD functions (h, left) and their conjugates (h∗, right) from Table 3.1.
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So from (3.34), the dual cone is:

K∗
MMD := cl{ũ ∈ R> × R× V : v ≥ u tr(h∗(u−1w))}. (3.83)

3.6.3 Derivatives of the separable spectral function

Suppose w ≻ 0. Since φ(w) = tr(h(w)) and ∇h is matrix monotone, from (3.80) we can write the
gradient:

∇φ(w) = ∇h(w) = αe+ βw +

∫ ∞

0
(e− t(w + te)−1) dρ(t). (3.84)

Note that w + te ≻ 0 for t ≥ 0, so (w + te)−1 is well-defined. Differentiating (3.84) in the direction
r ∈ V , we have the second order directional derivative (using (3.25)):

∇2φ(w)[r] = βr +

∫ ∞

0
tP ((w + te)−1)r dρ(t), (3.85)

and the third order directional derivative (using (3.26)):

∇3φ(w)[r, r] = −2
∫ ∞

0
tP ((w + te)−1/2)(P ((w + te)−1/2)r)2 dρ(t). (3.86)

3.6.4 Self-concordant barrier

For KMMD, the LHB Γ : int(KMMD)→ R from (3.41) has the form:

Γ(ũ) := − log(ζ(ũ))− log(v)− logdet(w). (3.87)
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We describe easily-computable oracles for this Γ in Section 3.5, including an inverse Hessian product
H̄ in Section 3.5.3 that is as easy to compute as the Hessian product H (since φ is a separable
spectral function).

We note that Faybusovich and Tsuchiya (2017) derive a (1 + d)-self-concordant barrier for the
related convex (but not conic) set S:

S := cl{(u,w) ∈ R× int(Q) : u− φ(w) ≥ 0}. (3.88)

KMMD is the conic hull of S. In Proposition 3.6.1, we prove that our barrier Γ in (3.87) is self-
concordant, hence it is an LHSCB for KMMD with parameter 2+ d. This small additive increment of
one in the barrier parameter is in sharp contrast to generic conic hull results, which give barriers
with a large multiplicative factor in the parameter (for example, Nesterov and Nemirovski (1994,
Proposition 5.1.4) yields the parameter 800(1 + d)). Since the optimal barrier parameter for cl(E) is
1 + d, our parameter cannot be reduced by more than one.

Proposition 3.6.1. Γ in (3.87) is a (2 + d)-LHSCB for KMMD in (3.82).

Proof. We show that ζ in (3.81) is (R≥, 1)-compatible with the domain E , in the sense of Nesterov
and Nemirovski (1994, Definition 5.1.1). This follows if (i) ζ is C3-smooth on E , (ii) ζ is concave with
respect to R≥, (iii) for any point ũ ∈ int(KMMD) and direction p̃ = (p, q, r) ∈ R× R× V satisfying
v ± q ≥ 0 and w ± r ⪰ 0 it holds that:

∇3ζ(ũ)[p̃, p̃, p̃] ≤ −3∇2ζ(ũ)[p̃, p̃]. (3.89)

Suppose v ± q ≥ 0 and w ± r ⪰ 0. As in (3.44), we let µ := µ(v, w) = v−1w ≻ 0 and
ξ := v−1(r−qµ). From (3.45), the second and third order directional derivatives of ζ at ũ in direction
p̃ are:

∇2ζ(ũ)[p̃, p̃] = −v∇2φ(µ)[ξ, ξ], (3.90a)

∇3ζ(ũ)[p̃, p̃, p̃] = −v∇3φ(µ)[ξ, ξ, ξ] + 3q∇2φ(µ)[ξ, ξ]. (3.90b)

Since φ is convex and C3-smooth on int(Q) by assumption, (3.81) and (3.90) imply that ζ is concave
and C3-smooth on E . It remains to show that (3.89) holds.

For t ≥ 0, let:

a(t) := µ+ te ≻ 0, (3.91a)

ā(t) := a(t)−1/2 ≻ 0, (3.91b)

ξ̂(t) := P (ā(t))ξ. (3.91c)

By the integral representation result from Section 3.6.1 (Löwner, 1934), there exists a positive
measure ρ and β ≥ 0 such that the directional derivatives of φ are:

∇2φ(µ)[ξ, ξ] = β tr(ξ2) +

∫ ∞

0
t tr(ξ̂(t)2) dρ(t), (3.92a)
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∇3φ(µ)[ξ, ξ, ξ] = −2
∫ ∞

0
t tr(ξ̂(t)3) dρ(t), (3.92b)

using (3.85) and (3.86). From (3.90) and (3.92), the compatibility condition (3.89) is equivalent to
nonnegativity of:

− 3∇2ζ(ũ)[p̃, p̃]−∇3ζ(ũ)[p̃, p̃, p̃] (3.93a)

= 3(v − q)β tr(ξ2) +
∫ ∞

0
t(3(v − q) tr(ξ̂(t)2)− 2v tr(ξ̂(t)3)) dρ(t). (3.93b)

Since v ≥ q, the first term in (3.93b) is nonnegative. The second term (the integral) is nonnegative
if for all t ≥ 0, the following inner term is nonnegative:

3(v − q) tr(ξ̂(t)2)− 2v tr(ξ̂(t)3) = ⟨ξ̂(t)2, 3(v − q)e− 2vξ̂(t)⟩. (3.94)

By self-duality of Q, (3.94) is nonnegative if 3(v − q)e− 2vξ̂(t) ⪰ 0, which we now prove. For t ≥ 0,
let:

b(t) := (1− v−1q)a(t)− ξ = v−1(w − r) + t(1− v−1q)e. (3.95)

Since w ⪰ r and 1− v−1q ≥ 0, we have b(t) ⪰ 0. Hence we have (using (3.95)):

(1− v−1q)e− ξ̂(t) = P (ā(t))b(t) ⪰ 0, (3.96)

since ā(t) ≻ 0 implies P (ā(t)) is an automorphism on Q (see Faraut and Koranyi (1998, Page 48)).
Therefore using (3.96):

3(v − q)e− 2vξ̂(t) ⪰ 3(v − q)e− 2v(1− v−1q)e = (v − q)e ⪰ 0. (3.97)

So (3.94) is nonnegative, which implies the integral term in (3.93b) is nonnegative.
Thus (3.93b) is nonnegative, so (3.89) holds and compatibility is proved. Now by Nesterov and

Nemirovski (1994, Proposition 5.1.7), Γ is an LHSCB for KMMD with parameter 2 + d.

3.7 Root-determinant cones

In Section 3.7.1, we define the root-determinant cone Krtdet, which is the hypograph of the homo-
geneous nonseparable spectral root-determinant function. After expressing the derivatives of this
function in Section 3.7.2, we prove that our barrier function Γ for Krtdet is an LHSCB in Section 3.7.3,
and we derive easily-computable barrier oracles in Section 3.7.4.
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3.7.1 Cone definition

Suppose Q is a cone of squares of a Jordan algebra V with rank d. Let φ : Q → R≥ denote the
root-determinant function (or the geometric mean of the eigenvalues):

φ(w) := det(w)1/d =
∏
i∈JdK

w
1/d
i , (3.98)

which is a concave, homogeneous nonseparable spectral function (see Section 3.3.1). We let ũ :=

(u,w) ∈ E = R×Q. The function ζ : E → R has the form:

ζ(ũ) := φ(w)− u. (3.99)

We define the root-determinant cone Krtdet and its dual cone as:

Krtdet := {(u,w) ∈ R×Q : u ≤ det(w)1/d}, (3.100a)

K∗
rtdet := {(u,w) ∈ R≤ ×Q : −d−1u ≤ det(w)1/d}. (3.100b)

We note that Krtdet is a hypograph modification of the epigraph cone Kh in (3.30), and it is a
primitive proper cone. K∗

rtdet can be derived by modifying the steps we use to derive K∗
h in (3.38)

and using the convex conjugate of the negative root-determinant function.

3.7.2 Derivatives of root-determinant

Suppose w ≻ 0. Since φ(w) = exp(d−1 logdet(w)), applying the chain rule and using (3.27) gives us
the gradient:

∇φ(w) = d−1φ(w)w−1. (3.101)

Let r ∈ V and r̂ := P (w−1/2)r ∈ V . Using the product rule on (3.101), we have the second order
directional derivative:

∇2φ(w)[r] = d−2⟨w−1, r⟩∇φ(w) + d−1φ(w)∇w(w−1)[r] (3.102a)

= d−1φ(w) tr(r̂)w−1 − d−1φ(w)P (w−1)r (3.102b)

= d−1φ(w)(d−1 tr(r̂)w−1 − P (w−1)r) (3.102c)

= d−1φ(w)P (w−1/2)(d−1 tr(r̂)e− r̂). (3.102d)

Note (3.102b) follows from (3.25). Finally, using the product rule on (3.102c), we have the third
order directional derivative:

∇3φ(w)[r, r] = d−1⟨d−1 tr(r̂)w−1 − P (w−1)r, r⟩∇φ(w) + d−1φ(w)(

d−1(⟨w−1, r⟩∇w(⟨w−1, r⟩) + tr(r̂)∇w(w−1)[r])−∇w(P (w−1)r)[r])
(3.103a)

= d−2φ(w)(d−1 tr(r̂)2 − tr(r̂2))w−1 + d−1φ(w)(

−2d−1 tr(r̂)P (w−1)r + 2P (w−1/2)(P (w−1/2)r)2)
(3.103b)
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= d−1φ(w)P (w−1/2)(d−1(d−1 tr(r̂)2 − tr(r̂2))e− 2d−1 tr(r̂)r̂ + 2r̂2). (3.103c)

Note (3.103b) follows from (3.26).

3.7.3 Self-concordant barrier

For Krtdet, the LHB Γ : int(Krtdet)→ R from (3.41) has the form:

Γ(ũ) := − log(ζ(ũ))− logdet(w). (3.104)

In Proposition 3.7.1 we show that Γ is self-concordant with parameter 1 + d. Since the optimal
barrier parameter for E is d, our parameter cannot be reduced by more than one.

Proposition 3.7.1. Γ in (3.104) is a (1 + d)-LHSCB for Krtdet in (3.100a).

Proof. Note Ψ(ũ) := − logdet(w) is a d-LHSCB for E . We show that ζ in (3.99) is (R≥, 1)-compatible
with the barrier Ψ in the sense of Nesterov and Nemirovski (1994, Definition 5.1.2). Compatibility
follows if (i) ζ is C3-smooth on int(E), (ii) concave with respect to R≥, (iii) for any point ũ ∈ int(Krtdet)

and direction p̃ = (p, r) ∈ R× V it holds that:

∇3ζ(ũ)[p̃, p̃, p̃] ≤ −3(∇2Ψ(ũ)[p̃, p̃])1/2∇2ζ(ũ)[p̃, p̃]. (3.105)

Suppose ũ ∈ int(Krtdet). From (3.99), we have:

∇2ζ(ũ)[p̃, p̃] = ∇2φ(w)[r, r], (3.106a)

∇3ζ(ũ)[p̃, p̃, p̃] = ∇3φ(w)[r, r, r]. (3.106b)

Since φ is concave and C3-smooth on int(Q), (3.106) implies ζ is concave and C3-smooth on int(E).
It remains to show that (3.105) holds.

Let σ ∈ Rd be the eigenvalues of r̂ := P (w−1/2)r. Then using (3.28a):

(∇2Ψ(ũ)[p̃, p̃])1/2 = tr(r̂2)1/2 = ∥σ∥. (3.107)

Let mk := d−1 tr(r̂k),∀k ∈ J3K, and let δi := σi −m1, ∀i ∈ JdK. By the formulae for variance and
skewness, we have:

m2 −m2
1 = d−1

∑
i∈JdK

δ2i , (3.108a)

m3 − 3m1m2 + 2m3
1 = d−1

∑
i∈JdK

δ3i . (3.108b)

For convenience, let φ := φ(w) > 0 be a constant. Using (3.102) and (3.108a), we have:

∇2φ(w)[r, r] = d−1φ⟨P (w−1/2)(d−1 tr(r̂)e− r̂), r⟩ (3.109a)

= −φ(d−1 tr(r̂2)− d−2 tr(r̂)2) (3.109b)
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= −φ(m2 −m2
1) (3.109c)

= −d−1φ
∑
i∈JdK

δ2i ≤ 0. (3.109d)

Similarly, using (3.103) and (3.108):

∇3φ(w)[r, r, r] = d−1φ⟨d−1(d−1 tr(r̂)2 − tr(r̂2))e− 2d−1 tr(r̂)r̂ + 2r̂2, r̂⟩ (3.110a)

= d−1φ(d−1(d−1 tr(r̂)2 − tr(r̂2)) tr(r̂)− 2d−1 tr(r̂) tr(r̂2) + 2 tr(r̂3)) (3.110b)

= φ(m3
1 − 3m1m2 + 2m3) (3.110c)

= φ(3m1(m2 −m2
1) + 2(m3 − 3m1m2 + 2m3

1)) (3.110d)

= d−1φ
∑
i∈JdK

(3m1δ
2
i + 2δ3i ) (3.110e)

= d−1φ
∑
i∈JdK

δ2i (m1 + 2σi). (3.110f)

Finally, using (3.107), (3.109) and (3.110) the compatibility condition (3.105) is equivalent to
nonnegativity of:

−∇3ζ(ũ)[p̃, p̃, p̃]− 3(∇2Ψ(ũ)[p̃, p̃])1/2∇2ζ(ũ)[p̃, p̃] (3.111a)

= −d−1φ
∑
i∈JdK

δ2i (m1 + 2σi) + 3∥σ∥d−1φ
∑
i∈JdK

δ2i (3.111b)

= d−1φ
∑
i∈JdK

δ2i (∥σ∥ −m1 + 2(∥σ∥ − σi)). (3.111c)

Clearly, d−1φδ2i ≥ 0 and σi ≤ ∥σ∥ for all i ∈ JdK. We have m1 ≤ d−1∥σ∥1 ≤ d−1/2∥σ∥ ≤ ∥σ∥. Hence
(3.111c) is nonnegative.

Thus (3.105) holds and compatibility is proved. Now by Nesterov and Nemirovski (1994,
Proposition 5.1.7), Γ is a (1 + d)-LHSCB for Krtdet.

3.7.4 Evaluating barrier oracles

Using the derivatives of φ from Section 3.7.2, we derive easily-computable oracles for the LHSCB
(3.104). Let ũ ∈ int(Krtdet) and p̃ = (p, r) ∈ R×V . For convenience, let φ := φ(w) > 0 be a constant.
We define the scalar constants:

η := d−1φζ−1, (3.112a)

θ := 1 + η, (3.112b)

χ := −ζ−1p+ η tr(r̂), (3.112c)

τ := χ− d−1 tr(r̂), (3.112d)

υ := tr(r̂2)− d−1 tr(r̂)2. (3.112e)
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Note that:

∇u(ζ−1) = ζ−2, (3.113a)

∇uη = ζ−1η, (3.113b)

∇uχ = ζ−1χ, (3.113c)

∇w(ζ−1) = −ζ−2∇φ(w) = −ζ−1ηw−1, (3.113d)

∇wη = η(d−1 − η)w−1, (3.113e)

∇wχ = ζ−1ηpw−1 + η(d−1 − η) tr(r̂)w−1 − ηP (w−1)r (3.113f)

= −η(τw−1 + P (w−1)r). (3.113g)

Note (3.113d) follows from (3.101), and (3.113f) follows from (3.25).
The gradient of Γ in (3.104) is:

gu = ζ−1, (3.114a)

gw = −ζ−1∇φ(w)− w−1 (3.114b)

= −θw−1. (3.114c)

Differentiating (3.114), the Hessian product is (using (3.25)):

Hu = ∇ugup+∇ugw[r] (3.115a)

= ζ−2p− ζ−1η tr(r̂) (3.115b)

= −ζ−1χ, (3.115c)

Hw = ∇wgup+∇wgw[r] (3.115d)

= −ζ−1ηpw−1 − tr(r̂)η(d−1 − η)w−1 + θP (w−1)r (3.115e)

= P (w−1/2)(ητe+ θr̂). (3.115f)

Differentiating (3.115), the the third order directional derivative is (using (3.26)):

Tu = ∇uHup+∇uHw[r] (3.116a)

= −2ζ−2pχ+ ζ−1η(τ tr(r̂) + tr(r̂2)) + ζ−1η tr(r̂)χ (3.116b)

= ζ−1(2χ2 + ηυ), (3.116c)

Tw = ∇wHup+∇wHw[r] (3.116d)

= ζ−1ηpχw−1 + ζ−1ηp(τw−1 + P (w−1)r)− ητP (w−1)r +

tr(r̂)τη(d−1 − η)w−1 + η(−η(τ tr(r̂) + tr(r̂2)) + d−1 tr(r̂2))w−1 +

η(d−1 − η) tr(r̂)P (w−1)r − 2θP (w−1/2)r̂2

(3.116e)

= η(−χτ + ζ−1pχ+ (d−1 − η)(tr(r̂)τ + tr(r̂2)))w−1 +

η(−τ + ζ−1p+ (d−1 − η) tr(r̂))P (w−1)r − 2θP (w−1/2)r̂2
(3.116f)
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= P (w−1/2)(η(−2χτ + (d−1 − η)υ)e− 2ητ r̂ − 2θr̂2). (3.116g)

In Lemma 3.7.1 below, we give a closed form inverse Hessian product operator. This operator
(3.117) a similar structure to the Hessian product operator (3.115), except that it applies P (w1/2)

instead of P (w−1/2).

Lemma 3.7.1. Letting ř := P (w1/2)r ∈ V , the inverse Hessian product is:

H̄u = (ζ2 + d−1φ2)p+ d−1φ tr(ř), (3.117a)

H̄w = P (w1/2)(d−1(φp+ ηθ−1 tr(ř))e+ θ−1ř). (3.117b)

Proof. Note that the Hessian operator (3.115) is a positive definite linear operator, so it has a unique
inverse linear operator. We show that (∇2Γ)−1(∇2Γ[p̃]) = p̃. Into (3.117), we substitute the values
from (3.115) i.e. p = Hu = −ζ−1χ and r = Hw = P (w−1/2)(ητe+θr̂). Since P (w1/2) = P (w−1/2)−1,
we have:

ř = P (w1/2)Hw = ητe+ θr̂, (3.118a)

tr(ř) = dητ + θ tr(r̂). (3.118b)

We have:

H̄u = (ζ2 + d−1φ2)(−ζ−1χ) + d−1φ(dητ + θ tr(r̂)) (3.119a)

= −ζχ+ φη(τ − χ) + d−1φθ tr(r̂) (3.119b)

= −ζ(χ− η tr(r̂)) (3.119c)

= p, (3.119d)

and:

H̄w = P (w1/2)(d−1(−φζ−1χ+ ηθ−1(dητ + θ tr(r̂)))e+ θ−1(ητe+ θr̂)) (3.120a)

= P (w1/2)(η(−τ + ηθ−1τ + θ−1τ)e+ r̂) (3.120b)

= P (w1/2)(r̂) (3.120c)

= r. (3.120d)

Hence (3.117) is the unique inverse operator of (3.115).

We note the polynomial-like structure of the oracles. In particular, the w components of the g, H,
and T oracles are computed by applying P (w−1/2) to a polynomial in r̂, of degree zero for g, degree
one for H, and degree two for T . Analogously to H, its inverse H̄ is computed by applying P (w1/2)

to a polynomial of degree one in ř. This structure leads to simple, efficient, and numerically-stable
implementations. We also note the structural similarity (ignoring constants) between the u and
w components of these oracles and those of the negative log-determinant barrier in Section 3.5.4.

120



In both cases, the oracles can be computed without an explicit eigendecomposition if it is possible
to apply P (w1/2) and P (w−1/2) directly. For example for V = Sd and V = Hd, only a Cholesky
factorization of w is needed.

3.8 Examples and computational testing

We outline our implementations of the MMD cone and the log-determinant and root-determinant
cones in Hypatia in Section 3.8.1. In Sections 3.8.4.1 to 3.8.4.4, we present example problems
with simple, natural formulations (NFs) in terms of these cones. Using techniques we describe
in Section 3.8.2, we construct equivalent extended formulations (EFs) that can be recognized by
MOSEK 9 or ECOS. Our computational benchmarks follow the methodology in Section 3.8.3 and
show that Hypatia typically solves the NFs much more efficiently than Hypatia, MOSEK, or ECOS
solve the EFs. Finally, in Section 3.8.5, we exemplify the computational impact of efficient oracle
procedures by comparing the performance of our closed form inverse Hessian product formula in
(3.69) with that of a naive direct solve using the explicit Hessian matrix.

3.8.1 Hypatia solver

Recall Hypatia’s primal general conic form, described in Section 1.4. Hypatia’s generic cone interface
allows specifying a vectorized proper cone K ⊂ Rq for some dimension q. For the real symmetric
domain Sd and the complex Hermitian domain Hd, we use the standard svec transformations to
real vector space described in Section 0.3. These transformations preserve inner products and
the self-duality of the cones of squares Sd⪰ and Hd

⪰. We adapt these transformations to enable
vectorization of spectral function cones. For example, for the epigraph-perspective cone Kp in (3.31),
the vectorization is (u, v, vec(w)) ∈ R2+q, where vec(w) ∈ Rq is the appropriate vectorization of
w ∈ Q. Fortunately, the dual cone of this vectorized cone is the analogous vectorization of the dual
cone K∗

p in (3.34).
For the domains Rd, Sd, and Hd, we implement the MMD cone KMMD, the log-determinant cone

Klogdet, and the root-determinant cone Krtdet in Hypatia.1 This allows the user to model with these
cones or their dual cones. As we discuss at the end of Sections 3.5.4 and 3.7.4, for Klogdet and Krtdet

the oracle procedures are quite specialized, for example we compute a Cholesky factorization rather
than an eigendecomposition for the Sd and Hd domains.

For KMMD, we predefine the MMD functions in Table 3.1 (e.g. NegEntropy). Recall that K∗
MMD

in (3.83) is defined using the convex conjugate of the MMD function; in the examples below we
suffix the MMD function names with Conj (e.g. NegEntropyConj ) to indicate use of the convex
conjugate function and K∗

MMD. We write NegLogdet or NegRtdet for the negative log-determinant
or negative root-determinant function, the epigraph of which we represent using Klogdet or Krtdet.

1Our Klogdet implementation is for the hypograph form introduced in Section 2.2.3.2 rather than the epigraph form
in Section 3.5.4. This only requires minor changes to the oracle derivations and the LHSCB proof from Section 3.6.4
for validity.
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In our examples, we choose not to use K∗
rtdet or K∗

logdet (or equivalently, K∗
MMD with NegLogConj ),

because these particular dual cones provide little additional modeling power over their primal cones.

3.8.2 Natural and extended formulations

To assess the computational value of our new cones and efficient oracles, we compare the performance
of Hypatia on NFs over KMMD, Klogdet, and Krtdet against that of other conic IPM solvers on
equivalent EFs. ECOS (Domahidi, Chu, and Boyd, 2013) is another open source conic IPM solver,
but it only supports nonnegative, second order, and three-dimensional exponential cones. MOSEK
version 9 (MOSEK ApS, 2020a) is a commercial conic IPM solver that supports the same cones as
ECOS as well as three-dimensional power cones and real symmetric PSD cones. As we discuss in
Section 2.2, we call the cones supported by MOSEK 9 the standard cones. To build the standard
cone EFs, we use a variety of formulation techniques, some of which we discuss and analyze in
Section 2.2.3.

For V = Rd, we use EFs of the form (2.24). The EFs for NegLog, NegEntropy, NegEntropyConj,
and NegRtdet use d exponential cones. The EFs for NegSqrt and NegSqrtConj use d three-dimensional
second order cones. The EFs for Power, NegPower, PowerConj, and NegPowerConj use d power
cones. The example in Section 3.8.4.1 uses V = Rd.

For V = Sd, we use EFs of the form (2.25). This is a large formulation with many additional
variables and PSD constraints. For NegLog and NegRtdet, we use the simpler EFs in (2.18) and (2.22).
Since NegSqrtConj is a scaling of the inverse function (see Table 3.1), a Schur complement repre-
sentation allows us to use an EF with one PSD cone constraint. For V = Hd, we generalize the
EF (2.25) for Hermitian matrices and apply the Hermitian PSD cone EF in Section 2.2.1.1. The
examples in Sections 3.8.4.2 and 3.8.4.3 use V = Sd and the example in Section 3.8.4.4 uses V = Hd.
The formulation dimensions and barrier parameters associated with these EFs are given in Table 2.1.

3.8.3 Computational methodology

Our computational experiments are similar to those of Section 2.3. We perform instance generation,
computational experiments, and results analysis on Ubuntu 21.10 with Julia 1.8.0 and Hypatia
0.5.3.2 We use dedicated hardware with an AMD Ryzen 9 3950X 16-core processor (32 threads)
and 128GB of RAM. For each example problem in Sections 3.8.4.1 to 3.8.4.4, we generate random
instances of a range of sizes, using JuMP 0.21.10 and MathOptInterface v0.9.22. All instances are
primal-dual feasible, so we expect solvers to return optimality certificates.

We use the conic IPM solvers in MOSEK version 9 and ECOS version 2.0.5 (with no features
disabled). Hypatia uses a particular default algorithmic implementation that we describe in Section 1.6
(the combined directions method with the QR-Cholesky linear system procedure). We limit each

2Benchmark scripts and instructions for reproducing and analyzing results are available at https://github.com/
chriscoey/Hypatia.jl/tree/master/benchmarks/natvsext. A raw output CSV file and detailed results tables are
at https://github.com/chriscoey/Hypatia.jl/wiki.
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solver to 16 threads and set a solve time limit of 1800 seconds. We set relative feasibility and
optimality gap tolerances to 10−7 and absolute optimality gap tolerances to 10−10.

For each instance, the relative difference between the objective values of the formulation/solver
combinations that converge never exceeds 10−4. For each instance/formulation/solver combination
that returns a solution, we measure the maximum violation ϵ of the primal-dual optimality conditions
in (2.26). In Figures 3.2 to 3.5, we plot solve times in seconds against an instance size parameter,
excluding solves for which ϵ > 10−5. Hyp-NF (i.e. Hypatia solving the NF) is faster than any EF
solver (Hyp-EF, MO-EF, ECOS-EF) across all instance sizes and spectral functions tested for each
example, and always scales to larger sizes.

3.8.4 Examples and results

3.8.4.1 Nonparametric distribution estimation

Suppose we have a random variable X taking values in the finite set {αi}i∈JdK. We seek a probability
distribution ρ ∈ Rd that minimizes a convex spectral function φ, given some prior information
expressed with d/2 linear equality constraints. Adapting Boyd and Vandenberghe (2004, Section
7.2), the problem is:

minρ∈Rd φ(ρ) : (3.121a)

tr(ρ) = d, (3.121b)

Aρ = b. (3.121c)

For four spectral functions φ on Rd≥ (with EFs that ECOS can recognize) and a range of sizes d,
we build random instances of (3.121). The results are summarized in Table 3.2 and Figure 3.2.
Note that for NegRtdet, no solve times are plotted for MO-EF because the optimality condition
violations ϵ are too large (see Section 3.8.3); tightening MOSEK’s tolerance options improves these
violations, though in either case MO-EF is significantly slower than Hyp-NF. We do not plot results
for NegLogdet (the Klogdet formulation using the specialized oracles from Section 3.5.4) as they are
nearly identical to the results for KMMD/NegLog ; however, the efficiency benefits of NegLogdet are
realized for the matrix domain in Section 3.8.4.2.

3.8.4.2 Experiment design

We formulate a continuous relaxation of the experiment design problem, similar to Boyd and
Vandenberghe (2004, Section 7.5). The variable ρ ∈ R2d is the number of trials to run for each of 2d
experiments that are useful for estimating a vector in Rd. The experiments are described by the
columns of V ∈ Rd×2d and we require that 2d experiments are performed. We minimize a convex
spectral function of the information matrix:

minρ∈R2d φ(V Diag(ρ)V ′) : (3.122a)

tr(ρ) = 2d, (3.122b)
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Table 3.2: Nonparametric distribution estimation solver statistics.

Hyp-NF Hyp-EF MO-EF ECOS-EF

cone d st it time st it time st it timest it time

NegRtdet

500 co 11 0.0 co 14 0.3 co 8 0.2 co 22 0.3
1000 co 11 0.1 co 13 1.5 co 8 0.7 co 23 6.4
2500 co 12 0.9 co 15 13 co 8 9.0 co 23 107
5000 co 12 6.5 co 14 68 co 8 67 co 24 895
10000 co 10 49 co 16 446 co 8 496 tl ∗ ∗
15000 co 14 172 co 14 1216 co 8 1589 sk ∗ ∗
20000 co 15 404 tl 7 1863 tl ∗ ∗ sk ∗ ∗
25000 co 14 756 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
30000 co 13 1252 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

NegLog

500 co 17 0.1 co 11 0.3 co 8 0.1 co 18 0.3
1000 co 17 0.2 co 13 1.5 co 16 0.5 co 17 11
2500 co 25 1.6 co 12 11 co 8 3.5 co 18 88
5000 co 29 11 co 13 153 co 11 22 co 18 324
10000 co 36 85 co 12 678 co 8 134 tl ∗ ∗
15000 co 40 279 tl ∗ ∗ co 12 440 sk ∗ ∗
20000 co 46 670 sk ∗ ∗ co 18 1051 sk ∗ ∗
25000 co 50 1331 sk ∗ ∗ tl 10 1812 sk ∗ ∗
30000 tl 35 1817 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

NegEntropy

500 co 14 0.0 co 12 0.3 co 17 0.1 co 19 0.3
1000 co 17 0.2 co 12 1.7 co 13 0.5 co 18 15
2500 co 24 1.6 co 13 27 co 19 4.8 co 18 44
5000 co 28 11 co 12 67 co 11 23 co 19 361
10000 co 35 84 co 12 792 co 12 146 tl 7 2157
15000 co 43 293 co 11 1053 co 8 420 sk ∗ ∗
20000 co 45 663 tl 7 1861 co 15 1003 sk ∗ ∗
25000 co 50 1332 sk ∗ ∗ co 8 1719 sk ∗ ∗
30000 tl 35 1824 sk ∗ ∗ tl ∗ ∗ sk ∗ ∗

NegSqrt

500 co 20 0.1 co 10 0.7 co 6 0.2 co 9 0.2
1000 co 19 0.2 co 10 3.7 co 7 0.8 co 8 11
2500 co 20 1.4 co 11 32 co 8 14 co 8 161
5000 co 22 10 co 9 153 co 5 54 co 8 343
10000 co 25 70 co 11 1026 co 7 478 tl 6 2157
15000 co 27 227 rl ∗ ∗ tl 6 1966 sk ∗ ∗
20000 co 32 555 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
25000 co 36 1111 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
30000 tl 35 1821 sk ∗ ∗ sk ∗ ∗ sk ∗ ∗
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Figure 3.2: Nonparametric distribution estimation solver performance.
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ρ ≥ 0. (3.122c)

For four different φ on Sd⪰ and various d, we build random instances of (3.122). The results are
summarized in Tables 3.3 and 3.4 and Figure 3.3. Since ECOS does not support Sd⪰, we only compare
with MOSEK. The Hyp-NegLogdet curve indicates that Hypatia with Klogdet is somewhat more
efficient than Hypatia with the equivalent KMMD/NegLog formulation; this is due to our oracle
specializations in Section 3.5.4 and our implementation using a Cholesky factorization rather than
an eigendecomposition.

Table 3.3: Experiment design solver statistics.

Hyp-NF Hyp-EF MO-EF

cone d st it time st it time st it time

NegRtdet

25 co 20 0.0 co 14 0.2 co 18 0.7
50 co 24 0.2 co 15 2.7 co 11 8.9
75 co 18 0.3 co 15 13 co 10 49
100 co 20 0.6 co 17 51 co 10 190
150 co 19 1.6 co 17 357 co 9 1178
200 sp 9 2.3 co 19 1596 rl ∗ ∗
300 co 19 16 rl ∗ ∗ sk ∗ ∗
400 co 19 37 sk ∗ ∗ sk ∗ ∗
500 co 23 95 sk ∗ ∗ sk ∗ ∗
600 co 22 159 sk ∗ ∗ sk ∗ ∗
700 co 19 233 sk ∗ ∗ sk ∗ ∗
800 co 20 417 sk ∗ ∗ sk ∗ ∗
900 co 18 554 sk ∗ ∗ sk ∗ ∗

NegLog

25 co 23 0.2 co 12 0.2 co 20 0.7
50 co 24 0.5 co 13 2.4 co 11 9.0
75 co 23 1.3 co 13 13 co 11 54
100 co 22 1.7 co 13 40 co 10 201
150 co 25 5.4 co 15 319 co 10 1305
200 co 21 10 co 14 1199 tl 0 1853
300 co 29 49 rl ∗ ∗ sk ∗ ∗
400 co 31 120 sk ∗ ∗ sk ∗ ∗
500 co 39 297 sk ∗ ∗ sk ∗ ∗
600 co 41 582 sk ∗ ∗ sk ∗ ∗
700 co 41 902 sk ∗ ∗ sk ∗ ∗
800 co 44 1528 sk ∗ ∗ sk ∗ ∗
900 tl 35 1801 sk ∗ ∗ sk ∗ ∗

3.8.4.3 Central polynomial Gram matrix

Suppose we have a polynomial of degree 2k in m variables. Let L =
(
m+k
m

)
and U =

(
m+2k
m

)
, and let

b ∈ RU be the monomial coefficients of the polynomial. We seek a Gram matrix ρ ∈ SL corresponding
to b (Parrilo, 2012, Lemma 3.33) that minimizes a convex spectral function φ:

minρ∈SL φ(ρ) : (3.123a)
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Table 3.4: Experiment design solver statistics.

Hyp-NF Hyp-EF MO-EF

cone d st it time st it time st it time

NegSqrtConj

25 co 26 0.2 co 14 0.2 sp 14 0.6
50 co 28 0.6 co 14 2.4 co 8 7.8
75 co 32 1.7 co 15 12 co 8 46
100 co 36 3.3 co 16 47 co 7 162
150 co 46 9.0 co 19 382 co 8 1170
200 co 48 21 co 19 1601 rl ∗ ∗
300 co 57 89 rl ∗ ∗ sk ∗ ∗
400 co 66 233 sk ∗ ∗ sk ∗ ∗
500 co 69 479 sk ∗ ∗ sk ∗ ∗
600 co 73 916 sk ∗ ∗ sk ∗ ∗
700 co 75 1527 sk ∗ ∗ sk ∗ ∗
800 tl 59 1811 sk ∗ ∗ sk ∗ ∗

NegPower(1/3)

25 co 19 0.2 sp 30 158 co 16 3.4
50 co 26 0.6 rl ∗ ∗ sp 42 225
75 co 27 1.5 sk ∗ ∗ tl 41 1817
100 co 24 2.1 sk ∗ ∗ sk ∗ ∗
150 co 29 6.3 sk ∗ ∗ sk ∗ ∗
200 co 27 13 sk ∗ ∗ sk ∗ ∗
300 co 27 45 sk ∗ ∗ sk ∗ ∗
400 co 30 119 sk ∗ ∗ sk ∗ ∗
500 co 27 212 sk ∗ ∗ sk ∗ ∗
600 co 29 420 sk ∗ ∗ sk ∗ ∗
700 co 30 697 sk ∗ ∗ sk ∗ ∗
800 co 28 972 sk ∗ ∗ sk ∗ ∗
900 co 30 1541 sk ∗ ∗ sk ∗ ∗
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Figure 3.3: Experiment design solver performance.
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C vec(ρ) = b, (3.123b)

where the matrix C ∈ RU×L(L+1)/2 maps the Gram matrix to the (lower-dimensional) polynomial
coefficient space. We build random instances of (3.123), varying m ∈ {1, 4} and k (depending on
m). Recall from Table 3.1 that ConjNegEntr and ConjPower-1.5 are defined on Sd, but NegEntr
and MatPower12(1.5) are only defined on Sd⪰, which implicitly requires that b be a sum-of-squares
polynomial and hence globally nonnegative. The results are summarized in Tables 3.5 and 3.6 and
Figure 3.4 (a log-log plot).

Table 3.5: Central polynomial Gram matrix solver statistics.

Hyp-NF Hyp-EF MO-EF

cone m k st it time st it time st it time

NegEntropy

1 15 co 14 0.1 co 19 7.5 co 11 0.4
1 25 co 16 0.6 co 29 200 co 17 5.7
1 50 co 24 5.5 rl ∗ ∗ co 25 220
1 75 co 23 23 sk ∗ ∗ tl 23 1845
1 100 co 27 72 sk ∗ ∗ sk ∗ ∗
1 125 co 29 167 sk ∗ ∗ sk ∗ ∗
1 150 co 33 426 sk ∗ ∗ sk ∗ ∗
1 175 co 32 826 sk ∗ ∗ sk ∗ ∗
1 200 tl 37 1807 sk ∗ ∗ sk ∗ ∗
4 2 co 12 0.1 co 14 4.0 co 11 0.3
4 3 co 17 1.1 tl 19 1885 co 22 27
4 4 co 23 15 sk ∗ ∗ co 28 1423
4 5 co 28 140 sk ∗ ∗ m ∗ ∗
4 6 tl 33 1830 sk ∗ ∗ sk ∗ ∗

NegEntropyConj

1 15 co 19 0.2 co 44 16 co 27 1.1
1 25 co 22 0.8 co 53 376 co 25 8.9
1 50 co 27 6.3 rl ∗ ∗ co 34 316
1 75 co 28 28 sk ∗ ∗ tl 20 1822
1 100 co 32 84 sk ∗ ∗ sk ∗ ∗
1 125 co 33 188 sk ∗ ∗ sk ∗ ∗
1 150 co 34 423 sk ∗ ∗ sk ∗ ∗
1 175 co 35 884 sk ∗ ∗ sk ∗ ∗
1 200 co 36 1729 sk ∗ ∗ sk ∗ ∗
4 2 co 17 0.1 co 24 6.6 co 14 0.4
4 3 co 24 1.5 tl 18 1844 co 22 27
4 4 co 31 20 sk ∗ ∗ co 31 1477
4 5 co 38 190 sk ∗ ∗ m ∗ ∗
4 6 tl 34 1820 sk ∗ ∗ sk ∗ ∗

3.8.4.4 Classical-quantum channel capacity

We compute the capacity of a classical-quantum channel, adapting the formulation from Sutter
et al. (2015, Example 2.16) and H. Fawzi and O. Fawzi (2018, Section 3.1). The variable ρ ∈ Rd is
a probability distribution on the d-dimensional input alphabet. For i ∈ JdK, let Pi ∈ Hd

⪰ be fixed
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Table 3.6: Central polynomial Gram matrix solver statistics.

Hyp-NF Hyp-EF MO-EF

cone m k st it time st it time st it time

Power12(1.5)

1 15 co 16 0.2 er 34 14 co 15 0.6
1 25 co 22 0.8 er 41 291 co 19 6.7
1 50 co 31 7.0 rl ∗ ∗ co 24 230
1 75 co 38 38 sk ∗ ∗ tl 22 1834
1 100 co 44 117 sk ∗ ∗ sk ∗ ∗
1 125 co 42 243 sk ∗ ∗ sk ∗ ∗
1 150 co 50 649 sk ∗ ∗ sk ∗ ∗
1 175 co 54 1400 sk ∗ ∗ sk ∗ ∗
1 200 tl 37 1822 sk ∗ ∗ sk ∗ ∗
4 2 co 16 0.1 sp 28 7.7 co 13 0.4
4 3 co 26 1.7 tl 18 1818 co 18 24
4 4 co 39 25 sk ∗ ∗ tl 37 1820
4 5 co 47 235 sk ∗ ∗ sk ∗ ∗
4 6 tl 33 1837 sk ∗ ∗ sk ∗ ∗

Power12Conj(1.5)

1 15 co 21 0.2 co 43 16 co 20 0.8
1 25 co 21 0.7 co 60 412 co 22 7.7
1 50 co 26 5.9 rl ∗ ∗ co 27 254
1 75 co 28 27 sk ∗ ∗ tl 20 1826
1 100 co 30 77 sk ∗ ∗ sk ∗ ∗
1 125 co 32 178 sk ∗ ∗ sk ∗ ∗
1 150 co 35 430 sk ∗ ∗ sk ∗ ∗
1 175 co 39 972 sk ∗ ∗ sk ∗ ∗
1 200 tl 38 1821 sk ∗ ∗ sk ∗ ∗
4 2 co 21 0.1 co 37 10 co 19 0.6
4 3 co 35 2.1 tl 18 1828 co 25 33
4 4 co 49 31 sk ∗ ∗ co 32 1598
4 5 co 58 286 sk ∗ ∗ m ∗ ∗
4 6 tl 34 1829 sk ∗ ∗ sk ∗ ∗
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Figure 3.4: Central polynomial Gram matrix solver performance.
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density matrices satisfying tr(Pi) = 1. Letting φ represent the trace of NegEntropy on Hd
⪰, the

formulation is:

minρ∈Rd φ
(∑

i∈JdKρiPi
)
−
∑

i∈JdKρiφ(Pi) : (3.124a)

tr(ρ) = 1, (3.124b)

ρ ≥ 0. (3.124c)

We generate random instances of (3.124), varying d. The results are summarized in Table 3.7 and
Figure 3.5.

Table 3.7: Classical-quantum channel capacity solver statistics.

Hyp-NF Hyp-EF MO-EF

d st it time st it time st it time

10 co 17 0.0 co 22 2.6 co 14 0.5
20 co 21 0.1 co 44 688 co 19 14
30 co 22 0.2 tl 8 1841 co 30 179
40 co 24 0.4 sk ∗ ∗ co 29 753
50 co 24 0.6 sk ∗ ∗ tl 20 1805
75 co 33 1.8 sk ∗ ∗ sk ∗ ∗
100 co 34 3.7 sk ∗ ∗ sk ∗ ∗
150 co 40 13 sk ∗ ∗ sk ∗ ∗
200 co 43 30 sk ∗ ∗ sk ∗ ∗
250 co 42 57 sk ∗ ∗ sk ∗ ∗
300 co 47 111 sk ∗ ∗ sk ∗ ∗
350 co 47 167 sk ∗ ∗ sk ∗ ∗
400 co 49 280 sk ∗ ∗ sk ∗ ∗
450 co 53 420 sk ∗ ∗ sk ∗ ∗
500 co 49 533 sk ∗ ∗ sk ∗ ∗
550 co 53 740 sk ∗ ∗ sk ∗ ∗
600 co 58 1105 sk ∗ ∗ sk ∗ ∗
650 co 58 1463 sk ∗ ∗ sk ∗ ∗
700 co 59 1748 sk ∗ ∗ sk ∗ ∗
750 tl 49 1805 sk ∗ ∗ sk ∗ ∗

3.8.5 Inverse Hessian product oracle

To illustrate the importance of our efficient and numerically stable oracle procedures, we compare
two different approaches to computing the inverse Hessian product oracle H̄ in (3.42c) for KMMD

cones (similar to our analysis in Section 2.6.4 for the spectral norm cone). The naive approach is to
compute the explicit Hessian matrix, perform a Cholesky factorization, and use a direct linear solve.
Alternatively, we apply the analytic formula for H̄ in (3.69), since KMMD is a special case of Kp with
a separable spectral function. This formula is essentially as easy to compute as the Hessian product
oracle H in (3.51) (which does not use an explicit Hessian matrix). In Table 3.8, we compare the
worst-case memory and time complexities for these procedures.
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Figure 3.5: Classical-quantum channel capacity solver performance.
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Table 3.8: Cone dimension and worst-case complexities for the two inverse Hessian product procedures.

closed form formula factorize and solve

V dim(KMMD) memory time memory time

Rd O(d) O(d) O(d) O(d2) O(d3)
Sd or Hd O(d2) O(d2) O(d3) O(d4) O(d6)
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To compare the practical performance of these procedures, we first use Hypatia to solve NF
instances of a range of sizes for the examples from Section 3.8.4.1 (with V = Rd) and Section 3.8.4.2
(with V = Sd), using KMMD with the NegEntropy function. For each instance, at Hypatia’s final IPM
iterate, we take the direction p̃ = g (i.e. the gradient oracle in (3.42a) at the iterate) and compute H̄
for this direction using both procedures. To measure the numerical accuracy of each procedure, we
compute the violation ϵ := |1− ν−1⟨H̄, g⟩| on a logarithmic homogeneity condition for the LHSCB Γ

with parameter ν = 2 + d. We also time each procedure, excluding Hessian memory allocation time
for the factorization-based procedure.

Our results are displayed in Figure 3.6. The Cholesky factorization fails at d = 3000 for the Rd

example and at d = 20, 50, 200 for the Sd example; when this occurs, Hypatia uses a Bunch-Kaufman
factorization as a fallback. Note that we loosen the convergence tolerances specified in Section 3.8.3
by a factor of 100, so that the factorization-based procedure fails less often. These comparisons
demonstrate that our closed form formula generally allows computing H̄ faster and with greater
numerical accuracy.

Figure 3.6: For instances of two examples using KMMD with NegEntropy, the speed and logarithmic
homogeneity condition violation (at the final iterate) for the two inverse Hessian product procedures.
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Chapter 4

Outer approximation with conic
certificates

Abstract

We present the first conic-duality-based branch-and-bound outer approximation algorithm for
mixed-integer conic problems. The polyhedral relaxations are refined with K∗ cuts derived from
conic certificates for continuous conic subproblems. Under the assumption that all subproblems
are well-posed, the algorithm detects infeasibility or unboundedness or returns an optimal solution
in finite time. Using properties of the conic certificates, we show that the K∗ cuts imply certain
practically-relevant guarantees about the quality of the polyhedral relaxations, and we show
how to maintain helpful guarantees when the LP solver uses a positive feasibility tolerance. We
discuss techniques for tightening the polyhedral relaxations such as cut disaggregation. Our
open source MI-conic solver Pajarito uses external mixed-integer linear solvers and continuous
conic solvers. Benchmarking on mixed-integer second order cone problems, we find that Pajarito
greatly outperforms Bonmin solver and is competitive with CPLEX’s specialized algorithm. On
new MI-conic examples involving standard second order, exponential, and positive semidefinite
cones, we demonstrate the computational benefits of our K∗ cut techniques.

4.1 Introduction

4.1.1 Branch-and-bound algorithms for mixed-integer convex optimization

A mixed-integer convex (MI-convex) problem minimizes a convex objective function over convex
constraints and integrality restrictions on a subset of the variables. Belotti et al. (2013) and Bonami,
Kılınç, and Linderoth (2012) review MI-convex applications and Lubin, Yamangil, et al. (2016)
characterize which nonconvex feasible regions are MI-convex-representable. Since an MI-convex
problem without integrality restrictions is just a convex problem, MI-convex optimization generalizes
both mixed-integer linear optimization (MILP) and convex optimization. This structure also leads
to effective branch-and-bound (B&B) algorithms, which recursively partition the possible values of
the integer variables in a search tree and obtain objective bounds and feasible solutions from convex
subproblems.
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A nonlinear B&B (B&B-NL) algorithm for an MI-convex problem solves a nonlinear subproblem
that includes all of the convex constraints at every node of the search tree. The Bonmin solver package
(Bonami, Biegler, et al., 2008) implements a B&B-NL variant by calling the derivative-oracle-based
nonlinear programming (NLP) solver Ipopt to solve the subproblems. The relatively recent SCIP-SDP
solver (Gally, Pfetsch, and Ulbrich, 2018) B&B-NL implementation for mixed-integer semidefinite
(MISDP) problems uses a primal-dual conic interior-point solver for the SDP subproblems.

Typically, B&B-NL methods need to solve a large number of very similar nonlinear subproblems
to near-global optimality and feasibility in order to obtain accurate objective bounds. Linear
optimization (LP) solvers based on the Simplex algorithm are able to rapidly reoptimize after
variable bounds are changed or linear cuts are added, thus typically benefiting from warm-starting
much more so than state-of-the-art NLP or conic solvers. B&B LP outer approximation (B&B-OA)
algorithms leverage LP warm-starting by solving a polyhedral relaxation of the nonlinear subproblem
at every node. Implementations often take advantage of the speed and stability of advanced MILP
branch-and-cut solvers.

B&B-OA algorithms differ in how they refine the polyhedral relaxations of the nonlinear con-
straints and how they obtain feasible solutions. In a separation-based algorithm, no nonlinear solver
is used. At each node the LP optimal point is first checked for feasibility for the convex constraints;
if the violation exceeds a positive tolerance, valid cuts separating the point are added to the LP,
otherwise the point may be accepted as a new incumbent if it is integral. Commercial mixed-integer
second order cone optimization (MISOCP) solvers typically use separation-based algorithms, but
also occasionally solve SOCP subproblems to obtain feasible solutions and fathom nodes. Quesada
and Grossmann (1992) and Leyffer (1993) describe subproblem-based B&B-OA algorithms that
solve smooth subproblems at a subset of the nodes. The subproblems provide points at which cuts
based on gradient inequalities can be derived as follows. For a convex function f : Rn → R, the
set X = {x ∈ Rn : f(x) ≤ 0} is convex. If f is smooth, then given a point x̄ ∈ Rn, the following
gradient cut yields a polyhedral relaxation of X :

f(x̄) + (∇f(x̄))′(x− x̄) ≤ 0. (4.1)

Bonami, Biegler, et al. (2008) found that Bonmin’s B&B-OA method generally outperforms
its B&B-NL method. Since both of these methods rely on NLP subproblems, they frequently fail
in the presence of nonsmoothness. Continuous conic solvers are more numerically robust than
derivative-oracle-based NLP solvers on nonsmooth problems (such as SOCPs and SDPs). For the
special case of MISOCP, Drewes and Ulbrich (2012) propose a conic subproblem-based B&B-OA
algorithm that derives cuts from subgradients satisfying subproblem KKT optimality conditions,
and hence does not require smoothness assumptions.

Another advantage of conic solvers is that they return simple certificates proving primal or dual
infeasibility or optimality of a primal-dual solution pair. Using the theory of conic duality, it is
possible to describe an elegant OA algorithm for mixed-integer conic (MI-conic) problems that uses
conic certificates returned by primal-dual conic solvers. Unlike the algorithm by Drewes and Ulbrich
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(2012) for MISOCPs, the conic-certificate-based algorithm does not need to examine KKT conditions
or solve a second modified subproblem in the case of infeasibility. Lubin, Yamangil, et al. (2016)
propose and test this approach in an iterative OA algorithm. However a B&B algorithm using
a single search tree, instead of solving a sequence of MILP instances each with their own search
tree, is more flexible and likely to be significantly faster in practice. We fill this gap with the first
conic-certificate-based B&B-OA algorithm.

4.1.2 Mixed-integer conic form

In this chapter, use the following general form for MI-conic problems:

M


infx∈Rn c′x :

h−Gx ∈ K,

xi ∈ Z ∀i ∈ JIK,

(4.2a)

(4.2b)

(4.2c)

where K ⊂ Rq is a closed convex cone and Z is the set of integers. Unlike in Chapters 1 to 3, we
do not require K to be proper. This allows us to represent equality constraints with the zero cone
{0}, which simplifies the notation in this chapter. Compared to Hypatia’s primal conic form (1.7),
M lacks the explicit equality constraints b−Ax = 0, but has integer constraints (4.2c) on the first
I ≤ n variables. Relaxing the integrality constraints results in a convex conic optimization problem.

Any MI-convex problem can be expressed in MI-conic form by homogenizing the convex constraints.
As we discuss in Section 2.2, conic solvers recognize the cone K as a Cartesian product of standard
primitive cones. A primitive cone cannot be written as a Cartesian product of two or more lower-
dimensional cones. The standard nonnegative, second order, and exponential cones are sufficient for
encoding all 333 MI-convex problems in MINLPLIB2 (Vigerske, 2018; Lubin, Yamangil, et al., 2017).
With the standard PSD cone, we can additionally represent all problems in the Conic Benchmark
Library (CBLIB) compiled by Friberg (2016). MI-conic representations are useful for constructing
tight formulations for unions of convex sets (Lubin, Yamangil, et al., 2016; Lubin, Zadik, and Vielma,
2017; Vielma, 2018); see Section 5.6.1.

4.1.3 Overview

In Section 4.2, we start by reviewing the relevant foundations of conic duality and certificates. We
then introduce the notion of K∗ cuts, and describe how to refine LP OAs of conic constraints using
certificates obtained from continuous primal-dual conic solvers. We describe our conic-certificate-
based B&B-OA algorithm, and we show that it detects infeasibility or unboundedness or terminates
with an optimal solution in finite time under minimal assumptions.

In Section 4.3, we demonstrate that a K∗ cut from a conic certificate implies useful guarantees
about the infeasibility or optimal objective of an LP OA, suggesting that our algorithm can often
fathom a node immediately after solving the LP rather than proceeding to the expensive conic
subproblem solve. We consider how these guarantees may be lost in the more realistic setting of an
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LP solver with a positive feasibility tolerance, and propose a practical methodology for scaling a
certificate K∗ cut to recover similar guarantees.

In Section 4.4, we describe how to strengthen the LP OAs by disaggregating K∗ cuts, and show
that this methodology maintains the guarantees from Section 4.3. We argue for initializing the LP
OAs using initial fixed K∗ cuts, and offer a procedure for cheaply obtaining separation K∗ cuts to
cut off an infeasible LP OA solution. These proposed techniques require minimal modifications to
our algorithm and are practical to implement.

In Section 4.5, we describe the software architecture and algorithmic implementation of Pajarito,
our open source MI-convex solver.1 This section may be of particular interest to advanced users and
developers of mathematical optimization software. We emphasize that our implementations diverge
from the idealized algorithmic description in Section 4.2, because of our decision to leverage powerful
external mixed-integer linear (MILP) solvers through a solver-independent interface, MathProgBase.

In Section 4.6, we specialize our K∗ cut techniques for the standard second order, exponential,
and PSD cones. For the second order cone, we describe how to lift K∗ cuts using an extended
formulation, resulting in tighter LP OAs. For the PSD cone, we show how to strengthen K∗ cuts to
rotated second order cone constraints, which can be added to an MISOCP OA model.

In Section 4.7, we summarize computational experiments demonstrating the speed and robustness
of Pajarito. We benchmark Pajarito and several MISOCP solver packages, and conclude that Pajarito
is the fastest and most-reliable open source solver for MISOCP. Finally, we compare the performance
of several of Pajarito’s algorithmic variants on new MI-conic examples, demonstrating practical
advantages of several methodological contributions from Sections 4.3, 4.4 and 4.6.

4.2 Branch-and-bound outer approximation algorithm

For an MI-conic problem M, we propose a B&B-OA algorithm, the first such method based on conic
certificates. In Section 4.2.1, we describe the continuous conic subproblems that a B&B-NL algorithm
would solve at each node, and review the relevant foundations of conic duality. In Section 4.2.2,
we introduce the notion of K∗ cuts and describe how to refine polyhedral relaxations of the conic
subproblems using information from conic certificates. Finally, we outline our B&B-OA algorithm in
Section 4.2.3, and discuss finiteness of convergence.

4.2.1 Continuous subproblems and conic duality

Recall from M that the first I ≤ n variables in x are constrained to be integer. Branch-and-bound
algorithms recursively partition the valid integer assignments, so for convenience we assume known
finite lower bounds l0 ∈ ZI and upper bounds u0 ∈ ZI on the integer variables x1, . . . , xI . At a node
of the branch-and-bound search tree with lower bounds l ∈ ZI and upper bounds u ∈ ZI on the

1Although Pajarito solver was introduced in Lubin, Yamangil, et al. (2016), this early implementation used
NLP solvers instead of primal-dual conic solvers for continuous subproblems, and was built to assess the value of
extended formulations by counting iterations before convergence. To avoid confusing users, we moved this NLP-based
functionality out of Pajarito and into Pavito solver at https://github.com/JuliaOpt/Pavito.jl.
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integer variables, the natural continuous conic subproblem is C(l, u):

C(l, u)



infx c′x :

h−Gx ∈ K,

li − xi ∈ R≤ ∀i ∈ JIK,

ui − xi ∈ R≥ ∀i ∈ JIK,

(4.3a)

(4.3b)

(4.3c)

(4.3d)

where the bound constraints (4.3c) and (4.3d) are expressed in conic form using the nonpositive
cone R≤ and the nonnegative cone R≥.

There exist primal-dual conic algorithms for C(l, u) that are powerful in both theory and practice.
The foundation for these methods and for much of this chapter is the elegant theory of conic duality
(Ben-Tal and Nemirovski, 2001; Boyd and Vandenberghe, 2004). Recall that the cone K in 4.3b is a
closed convex cone; we let K∗ denote the dual cone of K, i.e. the set of points that have nonnegative
inner product with all points in K:

K∗ = {z ∈ Rq : s′z ≥ 0,∀s ∈ K}. (4.4)

K∗ is also a closed convex cone (Boyd and Vandenberghe, 2004). The standard conic dual of C(l, u)
can be written as C∗(l, u):

C∗(l, u)



supz,µ,ν − h′z − l′µ− u′ν :

c+G′z + µ0 + ν0 = 0,

z ∈ K∗,

µ ∈ RI≤,

ν ∈ RI≥,

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)

where for ease of exposition we let µ0 = (µ1, . . . , µI , 0) ∈ Rn and similarly for ν0. Note that the
nonnegative and nonpositive cones are both self-dual, i.e. R∗

≤ = R≤ and R∗
≥ = R≥. The zero cone

{0} (containing only the origin) is dual to the free cone R. The variables z in the dual constraint
(4.5c) are associated with the primal constraint (4.3b), and similarly for (4.5d) and (4.3c), (4.5e)
and (4.3d).

If the conic primal-dual pair C(l, u)–C∗(l, u) is well-posed, then conic duality can be thought of
as a simple generalization of LP duality. If K is polyhedral, then K∗ is polyhedral, and hence C(l, u)

and C∗(l, u) are both LPs. All LPs are well-posed. In particular, the inf and sup can be replaced
with min and max, and the possible status combinations for C(l, u) and C∗(l, u) are: both infeasible,
one unbounded and the other infeasible, or both feasible and bounded with equal objective values
attained by optimal solutions. The conditions for well-posedness in conic duality are described
by Friberg (2016), and are outside the scope of this chapter, so we assume that any primal-dual
subproblem we encounter has the well-posed property.

Friberg (2016) discusses certificates that provide easily-verifiable proofs of unboundedness or
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infeasibility of the primal or dual problems or of optimality of a given pair of primal and dual points.
In terms of the primal subproblem C(l, u), the three possible mutually-exclusive cases and their
interpretations are as follows.

A dual improving ray certifies that C(l, u) is infeasible, via the conic generalization of Farkas’
lemma. The improving ray (z̄, µ̄, ν̄) ∈ Rq+2I of C∗(l, u) is a feasible direction for C∗(l, u) along
which the objective value of any feasible point of C∗(l, u) can be improved indefinitely. It
satisfies the following conditions:

−h′z̄ − l′µ̄− u′ν̄ > 0, (4.6a)

z̄ ∈ K∗, (4.6b)

µ̄ ≤ 0, (4.6c)

ν̄ ≥ 0, (4.6d)

G′z̄ + µ̄0 + ν̄0 = 0. (4.6e)

Clearly, if C∗(l, u) itself has a feasible point, then it is unbounded, otherwise it is infeasible.
Conditions (4.6b) to (4.6e) imply that (z̄, µ̄, ν̄) is feasible for a modified C∗(l, u) problem in
which c = 0.

A primal improving ray and a primal feasible point certifies that C(l, u) is unbounded, be-
cause the improving ray is a feasible direction along which the objective value of the feasible
point can be improved indefinitely. The improving ray x̄ ∈ Rn of C(l, u) also implies infeasibility
of C∗(l, u) and satisfies the following conditions:

c′x̄ < 0, (4.7a)

−Gx̄ ∈ K, (4.7b)

x̄i = 0 ∀i ∈ JIK, (4.7c)

and the feasible point x̂ ∈ Rn of C(l, u) simply satisfies the primal feasibility conditions (4.3).
Note that if the objective coefficients of the continuous variables are all zero (cI+1 = . . . =

cn = 0), then conditions (4.7a) and (4.7c) can never be satisfied, so there cannot be a primal
improving ray. This matches intuition because if the continuous variables have zero objective
coefficients and the integer variables are bounded, M cannot be unbounded.

A complementary solution pair certifies optimality for C(l, u) of the primal feasible point x̂ ∈ Rn

in the pair (x̂, (ẑ, µ̂, ν̂)), via conic weak duality. The dual feasible point (ẑ, µ̂, ν̂) ∈ Rq+2I is
also optimal for C∗(l, u), and the pair have equal primal and dual objective values:

c′x̂ = −h′ẑ − l′µ̂− u′ν̂. (4.8)
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4.2.2 Dynamic polyhedral relaxations

Recall from (4.4) that s ∈ K if and only if z′s ≥ 0, ∀z ∈ K∗. This implies that a nonpolyhedral conic
constraint h−Gx ∈ K has the following equivalent semi-infinite linear representation:

z′(h−Gx) ≥ 0 ∀z ∈ K∗. (4.9)

We refer to a point z ∈ K∗ as a K∗ point, and call the corresponding linear constraint z′(h−Gx) ≥ 0

a K∗ cut. A K∗ cut cannot exclude any point x that satisfies h−Gx ∈ K, so any finite set of K∗

cuts defines a valid polyhedral relaxation of the conic constraint (4.3b).
Given a finite set Z ⊂ K∗ of K∗ points, consider modifying the subproblem C(l, u) by relaxing

the conic constraint and instead imposing the finite number of K∗ cuts implied by Z. We refer to
the resulting LP as P(Z, l, u), which we write in inequality form rather than conic form:

P(Z, l, u)



minx c′x :

xi ≥ li ∀i ∈ JIK,

xi ≤ ui ∀i ∈ JIK,

z′(h−Gx) ≥ 0 ∀z ∈ Z.

(4.10a)

(4.10b)

(4.10c)

(4.10d)

Since P(Z, l, u) and C(l, u) have the same objective function, and the feasible set of P(Z, l, u)
is a polyhedral relaxation of the feasible set of C(l, u), solving P(Z, l, u) with an LP solver may
give us useful information about C(l, u). If P(Z, l, u) is infeasible, then C(l, u) must be infeasible.
If P(Z, l, u) has an optimal objective value of L, then C(l, u) is either infeasible or has an optimal
objective no smaller than L. In these cases, we may be able to immediately fathom the node by
infeasibility or by bound, or even use a fractional optimal solution for P(Z, l, u) to make a branching
decision, without needing to solve C(l, u). However, if P(Z, l, u) is unbounded, it does not provide
useful information about the status or optimal value of C(l, u).

An LP solver based on the Simplex algorithm is able to rapidly reoptimize P(Z, l, u) at each
new node, after the bounds on the integer variables are updated and any new K∗ cuts are added. As
noted by Skajaa, E. D. Andersen, and Ye (2013), state-of-the-art conic solvers benefit much less
from warm-starting, so it may be computationally faster to sacrifice some information about the
conic subproblems in order to avoid some expensive conic subproblem solves.

In analogy to B&B-OA algorithms based on gradient cuts, we add a new cut after every infeasible
or bounded conic subproblem solve. Our key innovation, however, is to obtain this cut directly from
the conic certificate found by the conic subproblem solver. Suppose that at some node, a primal-dual
conic subproblem solver yields a dual improving ray (z̄, µ̄, ν̄): from condition (4.6b), z̄ ∈ K∗, so z̄ is
a K∗ point. Now suppose that the subproblem solver yields a complementary solution (x̂, (ẑ, µ̂, ν̂)):
by the dual feasibility condition (4.5c), ẑ ∈ K∗, so ẑ is a K∗ point. In both cases, a subvector of the
ray or solution for the dual subproblem C∗(l, u) allows us to augment Z ⊂ K∗, refining our LP OA
model P(Z, l, u). In Section 4.3, we use conic duality theory to show that these K∗ cuts derived from
certificates encode important information about conic subproblems into the subsequent polyhedral
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relaxations.

4.2.3 Conic-certificate-based algorithm

Our conic-certificate-based B&B-OA algorithm for the MI-conic problem M is outlined in Algorithm 1.
Recall that M is in minimization form. Algorithm 1 maintains an upper bound U (initially ∞),
a corresponding best feasible solution set X (initially empty), and a set of active nodes N of the
search tree. A node (l, u, L) is characterized by the finite variable bound vectors l and u and a lower
bound value L. The node’s lower bound L signifies that all feasible solutions for M that satisfy
the node’s bounds on integer variables have an objective value of at least L. The node set N is
initialized to contain only the root node (l0, u0,−∞), where l0, u0 ∈ RI are the finite initial global
bounds on the integer variables.

On Line 5, the main loop removes a node (l, u, L) from N . If the node’s lower bound L is no
smaller than the current global best upper bound U , Line 7 fathoms the node by bound as it cannot
yield a better incumbent. Otherwise, Line 8 solves the node’s LP OA model P(Z, l, u), taking
advantage of an LP warm-start from a previous node.

If P(Z, l, u) is infeasible, Line 10 immediately fathoms the node by infeasibility. If P(Z, l, u)
has an optimal solution x̂, then its optimal objective value is the tightest lower bound known for
C(l, u) (in Section 4.3.1.2, we prove c′x̂ ≥ L is a consequence of the K∗ cuts), so Line 12 updates L
to c′x̂. Line 14 fathoms the node by bound if L is no better than the incumbent value U , otherwise
if x̂ is fractional (i.e. it violates an integrality constraint (4.2c)), Line 17 branches on it. Note we
could instead remove lines 15-17 and solve the conic subproblem even if the LP solution is fractional,
rather than branching; this variation may perform better if the conic subproblem solves are quite
fast in practice. The branch procedure strictly partitions the node’s integer bounds l and u by
picking an i ∈ JIK : x̂i /∈ Z and adding two child nodes to N : (l, (u1, . . . , ⌊x̂i⌋, . . . , un), L) and
((l1, . . . , ⌈x̂i⌉, . . . , ln), u, L).

If the node is not fathomed or branched on immediately after the LP solve (before Line 18), then
P(Z, l, u) is either unbounded or has an optimal solution x̂ that is integral (i.e. x̂i ∈ Z,∀i ∈ JIK)
with optimal value c′x̂ < U . Then Line 18 solves the conic subproblem C(l, u) with the primal-dual
continuous conic solver. Recall from Section 4.2.1 our assumption that the primal-dual subproblem
pair C(l, u)–C∗(l, u) is well-posed, so the conic solver returns one of the three possible certificates,
which we handle as follows.

A dual improving ray on Line 19 provides a K∗ point, which Line 20 adds to Z (as described in
Section 4.2.2). This certificate proves that C(l, u) is infeasible, so Line 21 fathoms the node by
infeasibility.

A primal improving ray and feasible point on Line 22 certifies that C(l, u) is unbounded.
Since the primal improving ray conditions (4.7a) to (4.7c) are the same for any conic subprob-
lem, every subproblem is infeasible or unbounded, so M is either infeasible or unbounded. The
incumbent solution set must be empty and U =∞. Line 23 checks whether the feasible point
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Algorithm 1: Conic-certificate-based branch-and-bound LP outer approximation for M.
1 initialize incumbent solution set X to ∅, upper bound U to ∞
2 initialize K∗ point set Z to ∅
3 initialize node list N with root node (l0, u0,−∞)
4 while N contains nodes do
5 remove a node (l, u, L) from N
6 if lower bound L ≥ U then
7 continue ▷ fathomed by bound

8 call LP solver on P(Z, l, u)
9 if get an infeasibility proof then

10 continue ▷ fathomed by infeasibility
11 else if get an optimal solution x̂ then
12 update L to c′x̂
13 if L ≥ U then
14 continue ▷ fathomed by bound
15 else if x̂ is fractional then
16 add branch nodes to N using x̂ and L
17 continue ▷ branched

18 call primal-dual continuous conic solver on C(l, u)
19 if get a dual improving ray (z̄, µ̄, ν̄) then
20 add K∗ point z̄ to Z
21 continue ▷ fathomed by infeasibility
22 else if get a primal improving ray x̄ and feasible point x̂ then
23 if x̂ is integral then
24 update U to −∞
25 break ▷ proven unbounded

26 else if get a complementary solution (x̂, (ẑ, µ̂, ν̂)) then
27 add K∗ point ẑ to Z
28 update L to c′x̂
29 if L ≥ U then
30 continue ▷ fathomed by bound
31 else if x̂ is integral then
32 update X to {x̂} and U to c′x̂
33 continue ▷ fathomed by integrality

34 add branch nodes to N using x̂ (fractional) and L

35 return X , U
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x̂ is integral. If so, it is a feasible solution for M, so M is unbounded and Line 25 terminates
the main loop.

A complementary solution on Line 26 provides a K∗ point that Line 27 adds to Z (as described
in Section 4.2.2) and an optimal solution x̂ for C(l, u). The optimal objective value gives the
tightest lower bound known for the node, so Line 28 updates L to c′x̂, and Line 30 fathoms by
bound if this value is no better than U . Line 31 checks if x̂ is integral, in which case it becomes
the new incumbent solution for M on Line 32, and the node is fathomed by integrality on
Line 33.

If the node is not fathomed immediately after the conic solve (before Line 34), then x̂ is a feasible
solution for C(l, u) that is fractional. L is either ∞ (in the primal improving ray case) or finite (in
the complementary solution case), and is the best known lower bound for the node. Line 34 branches
on x̂ using the same branch procedure we describe above for Line 17.

Since the initial bounds on the integer variables are finite, and the main loop of Algorithm 1
either fathoms each node or strictly partitions its integer bounds or terminates the algorithm, it
follows that Algorithm 1 terminates finitely. From the fact that P(Z, l, u) is a valid polyhedral
relaxation of C(l, u), and from the correctness of our inferences from the subproblem certificates, it is
clear Algorithm 1 terminates correctly, under the assumption of well-posed conic subproblems. On
Line 35, if U =∞, then M is proven infeasible, otherwise if U is finite, then X contains an optimal
solution for M, otherwise U = −∞ and M is proven unbounded.

We note that without using the LP P(Z, l, u) (i.e. removing Lines 8 to 17 and not creating and
augmenting Z on Lines 2, 20 and 27), we get a simple conic-certificate-based B&B-NL algorithm for
C(l, u), for which finite termination guarantees and correctness follow from the same assumptions
and arguments. We have omitted any discussion of node selection or fractional variable selection
for branching. MILP solvers can use LP certificates to make intelligent selections, and we expect
that some of these LP-based criteria are generalizable to the conic case, as conic duality theory is a
simple extension of LP duality under the well-posed assumption.

4.3 Polyhedral relaxation guarantees from conic certificates

Recall from Section 4.2.2 that K∗ cuts yield valid polyhedral relaxations of the conic constraint
h − Gx ∈ K, and a certificate K∗ cut can be obtained directly from the conic certificate for an
infeasible or bounded and feasible subproblem C(l, u). We demonstrate in Section 4.3.1 that a
certificate K∗ cut implies useful guarantees about the infeasibility or optimal objective of the LP
OAs, suggesting that Algorithm 1 can often fathom a node immediately after solving the LP OA
rather than proceeding to the expensive conic subproblem solve. By similar arguments, we expect
that the certificate K∗ cut may be useful at nearby nodes for duality based prepossessing such as
reduced cost fixing (Gally, Pfetsch, and Ulbrich, 2018, sec. 7) or conflict analysis (Witzig, Berthold,
and Heinz, 2017). In Section 4.3.2, we consider how these guarantees may be lost in the more realistic
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setting of an LP solver with a positive feasibility tolerance, and propose a practical methodology for
scaling a certificate K∗ cut to recover similar guarantees.

4.3.1 Under an exact linear programming solver

We continue to assume well-posedness of every conic subproblem at every node. We consider what a
certificate K∗ from the conic subproblem C(l, u) at a node with bounds l, u on the integer variables
implies about the LP OA P(Z,

˜
l,
˜
u) at a different node with bounds

˜
l,
˜
u.

4.3.1.1 Infeasible subproblems

Suppose (z̄, µ̄, ν̄) is an improving ray of the dual subproblem C∗(l, u), certifying infeasibility of
C(l, u). Using properties (4.6a) to (4.6e) of this certificate, any point x ∈ Rn satisfying the bounds

˜
li ≤ xi ≤

˜
ui, ∀i ∈ JIK at the new node also satisfies:

z̄′(h−Gx) = h′z̄ − x′G′z̄ (4.11a)

= h′z̄ + x′µ̄0 + x′ν̄0 (4.11b)

≤ h′z̄ + x′µ̄0 + x′ν̄0 +
∑

i∈JIK((˜
li − xi)µ̄i + (

˜
ui − xi)ν̄i) (4.11c)

= h′z̄ +
˜
l′µ̄+

˜
u′ν̄ (4.11d)

= (h′z̄ + l′µ̄+ u′ν̄)− (l −
˜
l)′µ̄− (u−

˜
u)′ν̄. (4.11e)

From property (4.6a) of the certificate, h′z̄ + l′µ̄+ u′ν̄ < 0. If li ≤
˜
li ≤

˜
ui ≤ ui,∀i ∈ JIK, then

(l−
˜
l)′µ̄ ≥ 0 and (u−

˜
u)′ν̄ ≥ 0. In this case, the value (4.11e) is negative, so from (4.11a) to (4.11e),

the certificate K∗ cut z̄′(h−Gx) ≥ 0 is violated. Therefore, the certificate K∗ cut from the infeasible
subproblem C(l, u) guarantees infeasibility of any LP OA P(Z,

˜
l,
˜
u) in the subtree of the node with

bounds l, u on the integer variables.
More importantly for Algorithm 1, the certificate K∗ cut is likely to remain violated at ‘nearby’

nodes outside of this subtree, as the conditions (4.11a) to (4.11e) have a natural interpretation from
global sensitivity analysis. Perturbing the bounds on the integer variables from l, u to

˜
l,
˜
u changes

the upper bound on z̄′(h−Gx) through a linear dependence on the values µ ≤ 0 and ν ≥ 0 of the
dual variables in the improving ray of C∗(l, u).

4.3.1.2 Feasible subproblems

Suppose (x̂, (ẑ, µ̂, ν̂)) is a complementary solution pair for the subproblem C(l, u), certifying optimality
of the solution pair. Using the strong duality conditions (property (4.8) and feasibility for C(l, u)

and C∗(l, u)), any point x ∈ Rn satisfying the bounds
˜
li ≤ xi ≤

˜
ui,∀i ∈ JIK at the new node and the

certificate K∗ cut ẑ′(h−Gx) ≥ 0 has objective value:

c′x = −(G′ẑ + µ̂0 + ν̂0)′x (4.12a)

= −ẑ′Gx− x′(µ̂0 + ν̂0) (4.12b)
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= −h′ẑ + ẑ′(h−Gx)′ − x′(µ̂0 + ν̂0) (4.12c)

≥ −h′ẑ − x′(µ̂0 + ν̂0) (4.12d)

≥ −h′ẑ − x′(µ̂0 + ν̂0)−
∑

i∈JIK((˜
li − xi)µ̂i + (

˜
ui − xi)ν̂i) (4.12e)

= −h′ẑ −
˜
l′µ̂−

˜
u′ν̂ (4.12f)

= (−h′ẑ − l′µ̂− u′ν̂) + (l −
˜
l)′µ̂+ (u−

˜
u)′ν̂ (4.12g)

= c′x̂+ (l −
˜
l)′µ̂+ (u−

˜
u)′ν̂. (4.12h)

If li ≤
˜
li ≤

˜
ui ≤ ui, ∀i ∈ JIK, then (l −

˜
l)′µ̂ ≥ 0 and (u−

˜
u)′ν̂ ≥ 0. In this case, the value (4.12h)

is no smaller than c′x̂, the lower bound from the subproblem C(l, u). Therefore, the certificate K∗ cut
from the feasible subproblem C(l, u) guarantees that the optimal value of any LP OA P(Z,

˜
l,
˜
u) in

the subtree of the node with bounds l, u on the integer variables does not decrease, but may actually
improve. If Algorithm 1 branches on Line 34 after solving a bounded and feasible conic subproblem
to get the tightest lower bound, then when examining a child node, this objective guarantee ensures
the node’s lower bound L does not decrease when we update it to the optimal value of the LP OA
on Line 12.

More importantly for Algorithm 1, at ‘nearby’ nodes outside of this subtree, the objective bounds
implied by the certificate K∗ cut in the LP OA model are likely to remain fairly tight. Perturbing
the bounds on the integer variables from l, u to

˜
l,
˜
u changes the lower bound on c′x through a linear

dependence on the values µ ≤ 0 and ν ≥ 0 of the dual variables in the complementary solution pair
for C(l, u).

4.3.2 Under a linear programming solver with a feasibility tolerance

So far, we have been assuming that the LP solver computes a solution that satisfies all the K∗ cuts
in the LP OAs exactly. In practice, LP solvers based on the Simplex method (except those that use
rational arithmetic) enforce constraints up to an absolute constraint-wise violation tolerance δ > 0

(typically set by the user). Therefore, a more realistic assumption is that any solution returned
by the LP solver does not violate any K∗ cut by more than δ, i.e. a K∗ point z effectively yields a
‘relaxed K∗ cut’ z′(h−Gx) ≥ −δ. Under this relaxed condition, we may lose the ‘within-subtree’
guarantees described in Section 4.3.1. However, noting that any positive scaling of a K∗ point is still
a K∗ point, we demonstrate how to recover the infeasibility guarantee from Section 4.3.1.1 exactly,
and the objective bound guarantee from Section 4.3.1.2 to within a given relative objective gap
tolerance. Such an analysis appears to be novel in the MI-convex literature.

4.3.2.1 Infeasible subproblems

Suppose (z̄, µ̄, ν̄) is an improving ray of the dual subproblem C∗(l, u). From the property (4.6a)
of the certificate and the conditions (4.11a) to (4.11e), any point x ∈ Rn satisfying the bounds
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li ≤ xi ≤ ui, ∀i ∈ JIK and the relaxed certificate K∗ cut condition z̄′(h−Gx) ≥ −δ must satisfy:

0 > h′z̄ + l′µ̄+ u′ν̄ ≥ z̄′(h−Gx) ≥ −δ. (4.13)

Therefore, if δ > 0 is sufficiently large, the relaxed certificate K∗ cut condition fails to enforce the
infeasibility guarantee from Section 4.3.1.1.

However, for a positive multiplier γ̄ > 0 satisfying:

γ̄ >
δ

−h′z̄ − l′µ̄− u′ν̄
> 0, (4.14)

we have γ̄(h′z̄ + l′µ̄ + u′ν̄) < −δ. Therefore, the relaxed scaled certificate K∗ cut condition
γ̄z̄′(h−Gx) ≥ −δ recovers the infeasibility guarantee within the subtree of the node from which the
certificate is obtained. Note that the scaling factor (4.14) depends only on δ, problem data, and the
certificate for the infeasible subproblem C(l, u). We can modify Algorithm 1 on Line 20 to add the
scaled K∗ point γ̄z̄ to Z.

4.3.2.2 Feasible subproblems

Suppose (x̂, (ẑ, µ̂, ν̂)) is a complementary solution pair for the subproblem C(l, u). From the conditions
(4.12a) to (4.12h), any point x ∈ Rn satisfying the bounds li ≤ xi ≤ ui,∀i ∈ JIK and the relaxed
certificate K∗ cut condition ẑ′(h−Gx) ≥ −δ has objective value:

c′x ≥ −h′ẑ + ẑ′(h−Gx)− l′µ̂− u′ν̂ ≥ L− δ. (4.15)

Recall L = c′x̂ = −h′ẑ − l′µ̂− u′ν̂ is the optimal objective value of C(l, u) and C∗(l, u). Therefore,
the relaxed certificate K∗ cut condition only enforces the objective guarantee from Section 4.3.1.2 to
an absolute tolerance of δ. In general, it makes little sense for an objective guarantee to depend on
the LP solver’s feasibility tolerance.

Instead, for a relative optimality gap tolerance ϵ > 0, we can easily motivate a relative objective
gap condition such as:

L− c′x
|L|+ θ

≤ ϵ. (4.16)

Consider a positive multiplier γ̂ > 0 satisfying:

γ̂ ≥ δ

ϵ(|L|+ θ)
> 0. (4.17)

Modifying the conditions (4.15) for the relaxed scaled certificate K∗ cut condition γ̂ẑ′(h−Gx) ≥ −δ,
we get c′x ≥ L− δ/γ̂. Rearranging, this implies:

L− c′x
|L|+ θ

≤ δ

γ̂(|L|+ θ)
≤ ϵ, (4.18)

so by scaling the certificate K∗ cut by γ̂, we achieve the relative objective gap guarantee (4.16) within
the subtree of the node from which the certificate is obtained. Note that the scaling factor (4.17)
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depends only on ϵ, δ, problem data, and the certificate for the bounded and feasible subproblem
C(l, u). We can modify Algorithm 1 on Line 27 to add the scaled K∗ point γ̂ẑ to Z.

4.4 Tightening polyhedral relaxations

In Section 4.4.1, we outline a two-stage procedure for disaggregating K∗ cuts to get stronger
polyhedral relaxations, and show how to maintain the certificate K∗ cut guarantees from Section 4.3.
In Section 4.4.2, we argue for initializing the polyhedral relaxations using initial fixed K∗ cuts, and
in Section 4.4.3, we describe a procedure for cheaply obtaining separation K∗ cuts to cut off an
infeasible LP OA solution. All of our proposed techniques for tightening the LP OAs require minimal
modifications to Algorithm 1 and are practical to implement.

4.4.1 Extreme ray disaggregation

Consider a set of K∗ points Z = {z1, . . . , zJ} ⊂ K∗. By aggregating the corresponding K∗ cuts, we
see they imply infinitely many K∗ cuts:

z′(h−Gx) ≥ 0 ∀z ∈ cone(Z), (4.19)

where cone(Z) is the conic hull of Z, i.e. the set of conic (nonnegative) combinations of z1, . . . , zJ :

cone(Z) = {α1z1 + · · ·+ αJzJ : α1, . . . , αj ≥ 0} ⊂ K∗. (4.20)

Thus for a redundant K∗ point zJ+1 ∈ cone(Z), the polyhedral relaxation of the conic constraint
h−Gx ∈ K implied by Z ∪ {zJ+1} is no stronger than that implied by Z alone. An extreme ray of
K∗ is a point z ∈ K∗ that cannot be written as a nontrivial conic combination of other points in K∗

that are not positive rescalings of z. To maximize the efficiency of our polyhedral relaxations, we
propose adding only extreme rays of K∗ to the K∗ point set Z maintained by Algorithm 1.

Recall from Section 4.1.2 that our closed convex cone K is encoded as a Cartesian product
K = K1 × · · · × KK of standard primitive cones K1, . . . ,KK . A primitive closed convex cone cannot
be written as a Cartesian product of two or more lower-dimensional closed convex cones (Friberg,
2016). If K is separable, then its dual cone K∗ is also separable:

K∗ = (K1 × · · · × KK)∗ = K∗
1 × · · · × K∗

K . (4.21)

We exploit this separability and our understanding of the structure of the standard primitive cones
to disaggregate a K∗ point z into extreme rays of K∗.

First, we note that z = (z̃1, . . . , z̃K) ∈ K∗, where z̃k ∈ K∗
k,∀k ∈ JKK. Second, for each k ∈ JKK,

we disaggregate z̃k into extreme rays of the primitive standard dual cone K∗
k. This step is trivial

for linear cones For second order, exponential, and PSD cones, we describe practical computational
procedures for dual disaggregation in Section 4.6. For example, if Kk is a PSD cone, we disaggregate
z̃k ∈ K∗

k by performing an eigendecomposition on it; see Section 4.6.4. We have z̃k =
∑

j∈JJkKz̃
k,j ,
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where z̃k,j ̸= 0 is an extreme ray of K∗
k, for all j ∈ JJkK. We choose these extreme rays so that none

is a positive scaling of another, and Jk does not exceed dim(K∗
k). Note that Jk = 0 if z̃k = 0.

For some k ∈ JKK and j ∈ JJkK, consider the point zk,j = (0, . . . , 0, z̃k,j , 0, . . . , 0), which is
nonzero only on the elements corresponding to the kth primitive dual cone. Since any cone contains
the origin 0, and z̃k,j ∈ K∗

k, z
k,j ∈ K∗ by (4.21). Furthermore, since z̃k,j is an extreme ray of K∗

k,
it cannot be written as a nontrivial sum of extreme rays of K∗

k, and so zk,j cannot be written as a
nontrivial sum of extreme rays of K∗. Thus zk,j is an extreme ray of K∗.

Our two-stage disaggregation procedure for z ∈ K∗ yields
∑

k∈JKKJk ≤ dim(K) = q extreme rays
of K∗:

z =
∑

k∈JKK,j∈JJkKz
k,j . (4.22)

Besides adding potentially multiple K∗ points to Z, no modifications are needed to the description
of Algorithm 1. Since z is clearly contained in the conic hull of these K∗ points, there is no loss
of strength in the polyhedral relaxations, so the certificate K∗ guarantees from Section 4.3.1 are
maintained. The polyhedral relaxations are potentially much tighter, improving the power of the LP
OA for fathoming a node by infeasibility or objective bound without proceeding to an expensive
conic subproblem solve. The LP solver may need to deal with more cuts at nodes visited early in the
search tree, but is ultimately likely to need to examine fewer nodes overall and solve fewer expensive
conic subproblems, so the tradeoff can be worthwhile.

We can also recover the guarantees from Section 4.3.2 for an LP solver with a feasibility tolerance
δ > 0. We assume z is a certificate K∗ point that has already been scaled according to Section 4.3.2.
After disaggregating z, we scale each extreme ray up by J =

∑
k∈JKKJk before adding it to Z. The

J relaxed scaled disaggregated K∗ cut conditions are:

(Jzk,j)′(h−Gx) ≥ −δ ∀k ∈ JKK, j ∈ JJkK. (4.23)

Summing and using (4.22), and dividing by J , we see that these conditions imply the relaxed scaled
original K∗ cut condition z′(h−Gx) ≥ −δ.

4.4.2 Initial fixed polyhedral relaxations

We can modify Algorithm 1 on Line 2 to initialize a nonempty set Z of initial fixed K∗ extreme rays
that are not derived from subproblem certificates, but depend only on the geometry of K∗. If K
is a separable product of standard primitive cones, we can obtain initial fixed K∗ extreme rays by
treating each primitive cone constraint separately. In particular, a linear cone constraint need not
be relaxed at all, since it is equivalent to one K∗ cut (for a nonnegative or nonpositive cone) or two
K∗ cuts (for the zero cone). In Section 4.6, we describe simple sets of initial fixed K∗ extreme rays
for second order, exponential, or PSD cones. For example, for a PSD cone, we use the extreme rays
of the polyhedral cone of diagonally dominant symmetric matrices as initial fixed K∗ extreme rays;
see Section 4.6.4. We show in Section 4.6 how knowledge of the initial fixed K∗ extreme rays allows
us to tailor our extreme ray disaggregation procedures from Section 4.4.1 for certificate K∗ points to
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further increase the strength of the polyhedral relaxations and reduce redundancy in Z. However, to
be able to recover the guarantees from Section 4.3.2 under an LP solver with a feasibility tolerance,
we would need the ability to dynamically scale up the initial fixed K∗ points.

4.4.3 Separation of infeasible points

Inspired by separation-based OA algorithms, we can modify Algorithm 1 on Line 16 to add separation
K∗ points to Z that cut off a fractional optimal LP solution x̂ that violates the conic constraint,
right before branching on x̂. We show that a separation K∗ point exists when h−Gx̂ /∈ K. Since K
is closed and convex, there exists a hyperplane (z, θ) that separates ŝ = h−Gx̂ from K, i.e. z′ŝ < θ

and z′s ≥ θ,∀s ∈ K. Since the problem infs∈Kz
′s is homogeneous (as K is a cone) and the optimal

value is bounded below by finite θ, the optimal value must equal zero. So θ ≤ 0, implying z′ŝ < 0

and z′s ≥ 0,∀s ∈ K. Thus z ∈ K∗ (by definition (4.4) of K∗), and it implies a K∗ cut that separates
x̂ from the feasible set of the conic constraint.

A separation K∗ point may fail to improve the objective lower bound from the LP OA, and does
not in general possess the sort of guarantees from Section 4.3 that a certificate K∗ point implies.
However, deriving a separation K∗ point can be much cheaper than solving a continuous conic
subproblem. If K is a separable product of standard primitive cones, we can obtain separation K∗

extreme rays easily by treating each primitive cone constraint separately. In Section 4.6, we describe
practical computational methods for obtaining separation K∗ extreme rays for the three standard
primitive cones Pajarito supports. For example, we obtain separation K∗ extreme rays for a point
that violates a PSD cone constraint by performing an eigendecomposition on it; see Section 4.6.4.

4.5 Pajarito solver and related software

We describe the software architecture and algorithmic implementation of Pajarito, our open source
MI-convex solver. This section may be of particular interest to advanced users and developers of
mathematical optimization software. We emphasize that our implementations diverge from the
idealized description of Algorithm 1 in Section 4.2.3, because of our decision to leverage powerful
external mixed-integer linear (MILP/MIP) solvers through a limited solver-independent interface,
MathProgBase. Developers of MI-conic software with low-level control of the MIP search tree are able
to implement features of Algorithm 1 that we cannot implement in Pajarito. In Pajarito’s readme
file at https://github.com/JuliaOpt/Pajarito.jl, we provide more guidance on recommended
ways of using the solver as well as default options and tolerances.

4.5.1 Integration with MathProgBase

Pajarito is integrated with the MathProgBase abstraction layer. MathProgBase is a standardized
API in Julia for interacting with optimization solvers, designed in part to allow the user to write
solver-independent code. It includes specifications for continuous and mixed-integer solvers that
use linear/quadratic, conic, or oracle-based NLP (nonlinear programming) forms. As we discuss in
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Section 5.2.1, MathProgBase has now been replaced by a redesigned API, MathOptInterface. The
process of building Pajarito has motivated many of the improvements in MathOptInterface.

Pajarito itself implements MathProgBase’s conic interface. Pajarito’s use of conic form is a
significant architectural difference from most existing MI-convex solvers, which interact with an
MI-convex instance almost exclusively through NLP oracles to query values and derivatives of the
constraint and objective functions. MathProgBase conic form can be described compactly from a
constraint matrix in sparse or dense format, right-hand side and objective coefficient vectors, variable
and constraint cones expressed as lists of standard vectorized primitive cones with corresponding
ordered row indices, and a vector of variable types (continuous, binary, or general integer).

In addition to the basic linear cones (nonnegative, nonpositive, zero, and free cones), Pajarito
recognizes three standard primitive nonpolyhedral cones: exponential cones (see Section 4.6.1), second
order cones (see Section 4.6.2), and PSD cones (see Section 4.6.4). Pajarito also recognizes rotated
second order cones, but for simplicity converts them to second order cones during preprocessing.

In Section 4.5.2, we summarize Pajarito’s main algorithmic implementations. Pajarito uses the
modeling package JuMP to conveniently build and manage the external MIP solver’s OA model.
JuMP itself interacts with the MIP solver via MathProgBase’s linear/quadratic interface. To solve a
continuous conic subproblem for a conic certificate, Pajarito calls the external primal-dual conic
solver through the conic interface.

4.5.2 Basic algorithmic implementations

We discuss the main conic-certificate-based methods Pajarito uses to solve the MI-conic model M.
We do not describe Pajarito’s preprocessing techniques and we omit many options, enhancements,
and numerical details. For explaining computational experiments, Section 4.7.3 briefly introduces
several other algorithmic variants that we do not discuss here, such as separation-based methods
that do not utilize conic certificates.

In Section 4.5.2.1, we summarize the initialization procedure for the OA model, an MILP
relaxation of M that Pajarito constructs and later refines (with extreme ray K∗ cuts) using JuMP.
In Section 4.5.2.2, we describe the ‘iterative’ method, an extension of the simple sequential OA
algorithm by Lubin, Yamangil, et al. (2017). In Section 4.5.2.3, we describe the ‘MIP-solver-driven’
(MSD) method, so-called because it relies on the power of the branch-and-cut MIP solver to manage
convergence in a single tree. Since MathProgBase’s solver-independent abstraction for MIP solver
callbacks is designed primarily around shared behavior between CPLEX and Gurobi, Pajarito is
limited to interacting with the MIP solver through a lazy cut callback function and a heuristic
callback function. Although the MSD method is generally faster than the iterative method, the latter
may be used with MILP solvers for which callback functionality is unavailable or unreliable.

4.5.2.1 Initializing the outer approximation model

We first solve the continuous relaxation of M (in which only the integrality constraints are relaxed),
using the primal-dual conic solver (see top of Figure 4.1). The conic relaxation is analogous to
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the first node subproblem in Algorithm 1, but without finite bounds on the integer variables. We
preprocess this conic model slightly to tighten any non-integral bounds on the integer variables. If
the conic solver indicates this relaxation is infeasible, then M must be infeasible, so we terminate
with an ‘infeasible’ status. If the conic solver returns a complementary solution pair, the optimal
value gives an objective lower bound L > −∞ for M. Otherwise, we set L = −∞. We initialize the
objective upper bound U for M to ∞.

Using JuMP, we build the initial OA model, adding the variables and integrality constraints and
setting the objective (see bottom of Figure 4.1). We then add initial fixed cuts for each primitive
cone, as we describe in Section 4.4.2. Primitive linear cone constraints are imposed entirely (as
equivalent LP equality or inequality constraints), and for each primitive nonpolyhedral cone, we add
a small number of initial fixed cuts.

A complementary solution pair from the conic relaxation solve yields a K∗ point, so we perform an
extreme ray disaggregation from Section 4.4.1 and add certificate cuts for each primitive nonpolyhedral
cone. These continuous relaxation certificate cuts technically guarantee that the root node of the
OA model has an optimal value no smaller than L. This can be seen from a simple modification of
the complementary solution case polyhedral relaxation guarantee we prove in Section 4.3.1.2, with
trivial bounds on the integer variables. This is important because we cannot handle unboundedness
of the OA model.

Figure 4.1: Pajarito’s OA model initialization.

solve continuous relaxation infeasible

let U =∞, L = relaxation objective value

build MILP OA model, add initial fixed cuts,
add relaxation certificate cuts

4.5.2.2 Iterative method

The iterative method, following initialization in Figure 4.1, is outlined in Figure 4.2. At each iteration
of the main loop, Pajarito solves the current OA model using the MIP solver. We suggest the
user set the MIP solver’s relative optimality gap tolerance to its smallest possible value. If the
OA model is infeasible, M must be infeasible, so we terminate with an ‘infeasible’ status. If it is
unbounded, Pajarito fails with an ‘OA fail’ error status, as we are unable to handle unbounded
rays. If the MIP solver returns an optimal solution to the OA model, this OA solution satisfies
the integrality constraints and initial fixed cuts, but in general not all of nonpolyhedral primitive
cone constraints. The MIP solver’s objective bound provides a lower bound for M, so we update L.
Pajarito terminates with an ‘optimal’ status if the relative optimality gap condition (4.16) on L,U
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is satisfied. Pajarito uses θ = 10−5 (to avoid division by 0). The gap tolerance ϵ > 0 is specified by
the user, but defaults to 10−5.

If after solving the OA model we have an optimal OA solution and the objective bounds haven’t
converged, we check whether the OA sub-solution on the integer variables has been encountered
before. If so, we check the conic feasibility of the OA solution. We calculate the absolute violation
on each primitive nonpolyhedral cone constraint as the violation of the appropriate separation cut.
If the worst absolute violation does not exceed Pajarito’s feasibility tolerance (set by the user), then
the OA solution is considered feasible. In this case, since the solution is optimal for the OA model,
we can consider it optimal for M, so we update the incumbent and upper bound and terminate the
solve immediately. If the OA solution is not considered feasible, we add all of the separation cuts
that are (significantly) violated to the OA model.

If the integer sub-solution has not already been encountered at a previous iteration, then we
solve a continuous conic subproblem in which the integer variables are fixed to their values in the
integer sub-solution. This subproblem is analogous to C(l, u) from Section 4.2.1, with l = u. In
preprocessing, we remove any subproblem equality constraints that effectively have no variables
when an integer sub-solution is fixed. For efficient loading of the subproblem data at each iteration,
we only change the constant vector h of the preprocessed conic subproblem, as this is the only data
that changes.

Since it is more constrained than the OA model, the conic subproblem is bounded or infeasible.
If the conic subproblem solver fails to return a certificate, we backtrack and perform the separation
procedure (as if the integer sub-solution repeated). Otherwise, we scale the certificate’s dual solution
or dual ray according to Section 4.3.2 (using the tolerance values set as Pajarito options), then
disaggregate the scaled K∗ point and add extreme ray certificate cuts to the OA model (as we
described for the continuous relaxation certificate in Section 4.5.2.1). In the case of a complementary
solution pair, the primal solution yields a feasible point for M, since it satisfies both the integrality
and conic constraints. If it has an objective value better than U , we update U and the incumbent
solution and check the relative optimality gap condition again. Conic solvers typically do not use an
absolute primitive constraint-wise feasibility tolerance, as Pajarito does for checking feasibility of
OA solutions for the conic constraint. Our incumbent may not satisfy this notion of feasibility, since
we do not perform a feasibility check on the conic solver’s primal subproblem solutions.

After adding separation or certificate cuts, we warm-start the MIP solver with our incumbent
and re-execute the main loop. The procedure in Figure 4.2 is iterated until L and U converge or the
MIP solver detects infeasibility. If the user sets a time limit, Pajarito may terminate with the status
‘user limit’. Pajarito sets the time limit on each MIP or conic solve to the remaining time. Note that
the vast majority of Pajarito execution time is spent in MIP or conic solves. Since we only add cuts
to the OA model on every loop, if the first OA model is bounded, then all subsequent (refined) OA
models are bounded or infeasible, and the sequence of lower bounds L is nondecreasing. In case of
failures of strong duality at some conic subproblems, Pajarito may fail to converge, as there exists
no finite set of cuts that can tighten the lower bound sufficiently to meet the upper bound. See
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Lubin, Yamangil, et al. (2016) for a discussion of strong duality in OA.

Figure 4.2: Pajarito’s iterative method, following initialization.

solve OA model

let L = objective bound;
L,U converged? optimal

OA fail

infeasible

integer sub-solution repeated?

solve subproblem; feasible?

update U and incumbent

add certificate cuts

solution conic feasible?

update U and incumbent

add separation cuts

warm-start OA model with incumbent

yes

no

no yes

noyes no yes

4.5.2.3 Mixed-integer solver-driven method

The MSD method, following initialization in Figure 4.1, is outlined in Figure 4.3. As in the iterative
method, Pajarito returns an ‘OA fail’ status if the MIP solver detects unboundedness (as we are
unable to handle unbounded rays), or an ‘infeasible’ status in the case of infeasibility. If the user sets
a time limit, Pajarito sets a time limit on the MIP solver, and terminates with a ‘user limit’ status
if this limit is reached. The MIP-solver-independent callback interface allows us to pass in lazy cuts
in during a lazy callback and feasible solutions during a heuristic callback, however we cannot exert
any control over branching decisions, node selection, fathoming, or node lower bound updating.

The MIP solver calls the lazy callback function whenever it finds an integer-feasible OA solution
at a node. During a lazy callback, we first check whether the integral OA solution from the MIP
solver is repeated. If so, we derive separation cuts to add as lazy constraints; if none can be
added, the MIP solver considers the solution feasible and may update its incumbent. If the integer
sub-solution is repeated, we solve a new (bounded or infeasible) conic subproblem. Since we lack
the ability to query the node’s bounds on the integer variables, we only solve subproblems with
fixed integer sub-solutions, as in the iterative method. If the conic solver returns a certificate, we
scale and disaggregate the K∗ point (as we described for the iterative method in Section 4.5.2.2),
and add extreme ray cuts as lazy constraints. The MIP solver is not guaranteed to respect the
cuts that we add, and we may need to re-add the same cuts during multiple lazy callbacks (unlike
in the iterative method, where cuts previously added are respected). For each repeated integer
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sub-solution, we re-add these saved certificate cuts, in addition to the new separation cuts. In the
case of a complementary solution pair, the primal solution yields a feasible point for M, which we
store. During a heuristic callback, if there is a stored feasible solution to M that has never been
added as a heuristic solution, we add it.

Since there are no guarantees on when or how frequently the MIP solver calls the heuristic
callback function, we may not be able to indirectly update the MIP solver’s incumbent and upper
bound when we are able to. Partly for this reason, Pajarito maintains its own upper bound and
incumbent (not illustrated in Figure 4.3), which we update during lazy callbacks. During each lazy
callback, we ask the MIP solver for its lower bound and check our relative optimality gap condition
(as we described for the iterative method). If the condition is met, we force the MIP solver to
terminate early (if the MIP solver allows). In this case, or if the MIP solver terminates with an
optimal solution and we verify that the relative optimality gap condition is met, we return our
incumbent solution with an ‘optimal’ status. Note the user is responsible for setting the desired
relative optimality gap tolerance on both the MIP solver and on Pajarito directly.

Figure 4.3: Pajarito’s MIP-solver-driven (MSD) method, following initialization.

call branch-and-cut
solver on OA model OA fail

infeasible

optimal

integer sub-solution repeated?

solve subproblem; feasible?

add certificate cutsstore solution

solution conic feasible?

add separation cuts

add stored solution

heuristic callback

lazy callback
integral
solution

no yes

noyes no

4.5.3 Advanced algorithmic enhancements

We conclude by describing two optional OA enhancements we implemented in Pajarito. First,
Pajarito by default uses an extended formulation (EF) for each second order cone constraint. Vielma,
Dunning, et al. (2017) demonstrate on a testset of MISOCP problems that OA algorithms tend to
converge much faster when using this extended representation for each second order cone constraint.
Pajarito keeps the original natural second order cone formulation in the conic subproblems because
conic solvers are likely to perform better with this representation than with the EF. In Section 4.6.3,
we describe how to lift a K∗ cut for the second order cone into K∗ cuts for the EF. This technique
also allows us to describe a much more economical set of initial fixed K∗ cuts for the second order
cone.
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Second, Pajarito can optionally use an MISOCP OA model instead of an MILP OA model.
There exist several powerful MISOCP solvers that can be used, or Pajarito itself may be used.
Since a second order cone constraint can imply an infinite number of K∗ cuts, Pajarito can achieve
tighter relaxations of the conic constraint in the OA model. This may be helpful for example when
the MI-conic problem has second order cones as well as exponential and/or PSD cones. Also, in
Section 4.6.5 we demonstrate how to strengthen K∗ cuts for PSD constraints to rotated-second order
cone constraints. By solving SOCP relaxations of PSD constraints, we can reduce the number of
expensive calls to an SDP subproblem solver. Note that for the MSD method, since most MISOCP
solvers don’t currently allow adding lazy quadratic constraints, only the initial fixed cuts can be
strengthened in this way.

4.6 Standard primitive nonpolyhedral cones

In this section, we tailor the general K∗ cut techniques for tightening OAs from Section 4.4 to
the three nonpolyhedral cones recognized by Pajarito: the exponential cone in Section 4.6.1, the
second order cone in Section 4.6.2, and the PSD cone in Section 4.6.4. In particular, we describe the
extreme ray disaggregations (see Section 4.4.1), initial fixed cuts (see Section 4.4.2), and separation
cuts (see Section 4.4.3) implemented in Pajarito. We also discuss the two advanced features from
Section 4.5.3: the second order cone EF in Section 4.6.3, and second order conic cuts for PSD cones
in Section 4.6.5.

4.6.1 Exponential cone

MathProgBase’s exponential cone Kexp ⊂ R3 is a permutation of the three-dimensional standard
exponential cone we define in Section 2.2 (which is equivalent to our logarithm cone (2.19) for d = 1).
Kexp is the epigraph of the perspective of the exponential function:

Kexp := cl{(r, s, t) ∈ R3 : s > 0, r ≥ s exp(t/s)} (4.24a)

= {(r, 0, t) : r ≥ 0, t ≤ 0} ∪ {(r, s, t) : s > 0, r ≥ s exp(t/s)}, (4.24b)

K∗
exp := cl{(u, v, w) ∈ R3 : u > 0, w < 0, v ≥ w − w log(−w/u)} (4.24c)

= {(u, v, 0) : u, v ≥ 0} ∪ {(u, v, w) : u > 0, w < 0, v ≥ w − w log(−w/u)}. (4.24d)

Suppose we have a constraint (r, s, t) ∈ Kexp. For initial fixed cuts, we use the two K∗
exp extreme

rays (1, 0, 0), (0, 1, 0) to impose the simple bound constraints r, s ≥ 0. We also use K∗
exp extreme rays

of the form (1, w − w log(−w), w) by picking several different values w < 0. Note the corresponding
cuts separate any point (0, 0, t) satisfying t > 0.

Suppose we have the K∗
exp point (u, v, w). If w = 0, the point is already a nonnegative combination

of the initial fixed K∗
exp points above, so we discard it. If w < 0, we use the K∗

exp extreme ray
(u,w − w log(−w/u), w), which when added to some nonnegative multiple of (0, 1, 0), gives (u, v, w).
Note this also projects (u, v, w) /∈ K∗

exp with u > 0, w < 0 onto K∗
exp.
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Suppose we want to separate a point (r, s, t) /∈ Kexp that satisfies the initial fixed cuts. Then
r, s ≥ 0 and if r = s = 0 then t ≤ 0. If s = 0, then t > 0 and r > 0, and we use the K∗

exp extreme
ray (t/r,−2 + 2 log(2r/t),−2). If s > 0, then r < s exp(t/s), and we use the K∗

exp extreme ray
(1, (t/s− 1) exp(t/s),− exp(t/s)).

4.6.2 Second order cone

The second order cone (or Euclidean norm cone) and the rotated second order cone (or Euclidean
norm square cone) are:

Kℓ2 := {(r, t) ∈ R1+d : r ≥ ∥t∥}, (4.25a)

Ksqr := {(r, s, t) ∈ R2+d : r ≥ 0, s ≥ 0, 2rs ≥ ∥t∥2}. (4.25b)

These cones are self-dual. Ksqr is an invertible linear transformation of Kℓ2 , since:

(r, s, t) ∈ Ksqr ⇔ (r + s, r − s,
√
2t) ∈ Kℓ2 , (4.26)

and these equivalent representations have the same dimension. As noted in Section 4.5, Pajarito
converts Ksqr constraints to Kℓ2 constraints during preprocessing.

We describe our initial fixed cuts for a constraint (r, t) ∈ Kℓ2 . First, note that the ℓ∞ norm
lower-bounds the ℓ2 norm, since ∥t∥∞ = maxi∈JdK|ti| ≤ ∥t∥. We use the 2d K∗

ℓ2
extreme rays

(1,±ei),∀i ∈ JdK, which imply r ≥ |ti|,∀i ∈ JdK, equivalent to the homogenized box relaxation
r ≥ ∥t∥∞. Second, we note that the ℓ1 norm also provides a lower bound for the ℓ2 norm, since
∥t∥1 =

∑
i∈JdK|ti| ≤

√
d∥t∥. We use the 2d K∗

ℓ2
extreme rays (1, σ/

√
d),∀σ ∈ {−1, 1}d, which imply

the homogenized diamond relaxation r ≥ ∥t∥1/
√
d. Although the number of initial fixed cuts is

exponential in d, in Section 4.6.3 we describe how Pajarito uses an EF to imply an initial fixed OA
that is at least as strong but uses only a polynomial number of cuts. Note that the K∗

ℓ2
point (1, 0),

which corresponds to the simple variable bound r ≥ 0, is a nontrivial conic combination of these
initial fixed K∗

ℓ2
extreme rays.

Suppose we have the K∗
ℓ2

point (u,w). If w = 0, the point is already a nonnegative multiple of
the K∗

ℓ2
point (1, 0), so we discard it. Otherwise, we use the K∗

ℓ2
extreme ray (∥w∥, w), which when

added to some nonnegative multiple of (1, 0), gives the original point (u,w). Note this also projects
(u,w) /∈ K∗

ℓ2
onto K∗

ℓ2
.

Suppose we want to separate a point (r, t) /∈ Kℓ2 that satisfies the initial fixed cuts. Then r ≥ 0

and so t ̸= 0, and we use the K∗
ℓ2

extreme ray (1,−t/∥t∥).

4.6.3 Extended formulation for the second order cone

As discussed in Section 4.5.3, Pajarito can optionally use an EF for second order cone constraints
proposed by Vielma, Dunning, et al. (2017), leading to tighter polyhedral relaxations. The constraint

157



(r, t) ∈ Kℓ2 is equivalent to the following constraints on r, t, and the auxiliary variables π ∈ Rd:

2e′π ≤ r, (4.27a)

(r, πi, ti) ∈ Ksqr ∀i ∈ JdK. (4.27b)

Suppose (u,w) is a K∗
ℓ2

extreme ray, so from Section 4.6.2, we have w ̸= 0 and u = ∥w∥ > 0.
Then ur + w′t ≥ 0 is a K∗

ℓ2
cut. Note that the linear constraint (4.27a) in the EF implies:

ur + w′t ≥ ur/2 + ue′π + w′t =
∑

i∈JdK(w
2
i r/(2u) + uπi + witi). (4.28)

For each i ∈ JdK, consider the K∗
sqr extreme ray (w2

i /(2u), u, wi), which implies a K∗
sqr cut for the

ith constraint (4.27b) in the EF. The RHS of (4.28) is an aggregation of these d K∗
sqr cuts, which

means the K∗
sqr cuts imply the K∗

ℓ2
cut ur + w′t ≥ 0. Therefore, there is no loss of strength in the

polyhedral relaxations, and we maintain the certificate K∗ cut guarantees from Section 4.3.1. Note
that without the ability to rescale the linear constraint (4.27a), we cannot recover the guarantees
under an LP solver with a feasibility tolerance from Section 4.3.2.

We now apply this lifting procedure to the initial fixed K∗
ℓ2

points described in Section 4.6.2. The
K∗
ℓ2

points for the ℓ∞ norm relaxation are (1,±ei),∀i ∈ JdK; for each i ∈ JdK, we get three unique
K∗

sqr extreme rays (0, 1, 0) (for wi = 0) and (1/2, 1,±1) (for wi = ±1). The K∗
ℓ2

points for the ℓ1
norm relaxation are (1, σ/

√
d),∀σ ∈ {−1, 1}d; for each i ∈ JdK, we get two unique K∗

sqr extreme rays
(1/(2d), 1,±1/

√
d) (for wi = ±1/

√
d). The polyhedral relaxation implied by these 5d K∗

sqr points in
the EF (4.27a) and (4.27b) is at least as strong as that implied by the 2d+2d K∗

ℓ2
initial fixed points

from Section 4.6.2, so our initial fixed OA can be imposed much more economically with the EF.

4.6.4 Positive semidefinite cone

MathProgBase, Pajarito, and our MI-conic form M use vectorized cone definitions. The matrix cone
Sd⪰ is the smat PSD cone, and its equivalent vectorized definition K⪰ ⊂ Rsd(d) is the svec PSD cone
(see Section 0.3). Sd⪰ and K⪰ are both self-dual. For convenience, we describe our cut techniques
using the smat space.

The extreme rays of Sd⪰ are the rank-one PSD matrices (Ben-Tal and Nemirovski, 2001), i.e.
ωω′ ∈ Sd⪰ for ω ∈ Rd. Hence an extreme ray S∗⪰ cut has the form:

⟨ωω′, T ⟩ = ω′Tω ≥ 0. (4.29)

We describe our initial fixed cuts for a constraint T ∈ Sd⪰. Let ei ∈ Rd be the ith unit vector in
d dimensions. For each i ∈ JdK, we let ω = ei in (4.29), which imposes the diagonal nonnegativity
condition Ti,i ≥ 0 necessary for PSDness. For each i, j ∈ JdK : i > j, we let ω = ei ± ej in (4.29),
which enforces the condition Ti,i + Tj,j ≥ 2|Ti,j | necessary for PSDness. Ahmadi and Hall (2015)
discuss a polyhedral inner approximation of the PSD cone called the cone of diagonally dominant
(DD) matrices. Our initial fixed S∗⪰ points are exactly the extreme rays of the DD cone, so our initial
fixed OA is the dual cone of the DD cone.
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Suppose we have an S∗⪰ point W , not necessarily an extreme ray of S∗⪰. We perform an
eigendecomposition W =

∑
i∈JdKλiω̃iω̃

′
i, where for all i ∈ JdK, λi is the ith eigenvalue and ω̃i is

the corresponding eigenvector. Since W is PSD, every eigenvalue is nonnegative, and there are
rank(W ) ≤ d positive eigenvalues. For each i ∈ JdK : λi > 0, we let ω =

√
λiω̃i in (4.29). These

extreme ray S∗⪰ cuts aggregate to imply the original S∗⪰ cut ⟨W,T ⟩ ≥ 0.
Suppose we want to separate a point T ̸∈ Sd⪰. We perform an eigendecomposition T =∑
i∈JdKλiτiτ

′
i , for which at least one eigenvalue is negative. For each i ∈ JdK : λi < 0, we let ω = τi in

(4.29). Each of these extreme ray S∗⪰ cuts separates T because ⟨τiτ ′i , T ⟩ = λi < 0.

4.6.5 Second order conic cuts for the positive semidefinite cone

For a PSD cone constraint T ∈ Sd⪰, we demonstrate how to strengthen an S∗⪰ extreme ray cut
⟨ωω′, T ⟩ ≥ 0 to up to d three-dimensional Ksqr constraints. Note Ksqr ⊂ R3 is a simple linear
transformation of S2⪰. As discussed in Section 4.5.3, Pajarito can optionally solve an MISOCP OA
model including these Ksqr constraints, leading to tighter relaxations.

We fix the index i ∈ JdK. Let
¯
ω = ωi be the ith element of ω, and

¯
ω = (ωj)j∈JdK\{i} ∈ Rd−1 be

the subvector of ω with the ith element removed. Similarly, let
¯
t = Ti,i and

¯
t = (Ti,j)j∈JdK\{i} ∈ Rd−1,

and let
¯
T = (Tk,j)k,j∈JdK\{i} ∈ Sd−1 be the submatrix of T with the ith column and row removed.

Kim, Kojima, and Yamashita (2003) prove a variant of the standard Schur-complement result that
T ∈ Sd⪰ if and only if

¯
t ≥ 0 and:

¯
T ∈ Sd−1

⪰ , (4.30a)

¯
t
¯
T −

¯
t
¯
t′ ∈ Sd−1

⪰ . (4.30b)

Consider the three-dimensional Ksqr constraint:

(
¯
t,
¯
ω′
¯
T
¯
ω,
√
2
¯
ω′
¯
t) ∈ Ksqr. (4.31)

By the definition of Ksqr, (4.31) is equivalent to
¯
t ≥ 0 and:

¯
ω′
¯
T
¯
ω ≥ 0, (4.32a)

¯
ω′(

¯
t
¯
T )

¯
ω ≥ (

¯
ω′
¯
t)2. (4.32b)

(4.30a) implies (4.32a), by the dual cone definition (4.4). Since (
¯
ω′
¯
t)2 =

¯
ω′
¯
t
¯
t′
¯
ω, (4.32b) is equivalent

to
¯
ω′(

¯
t
¯
T −

¯
t
¯
t′)

¯
ω ≥ 0. Thus, by the dual cone definition again, (4.30b) implies (4.32b). Therefore,

(4.31) is a valid relaxation of T ∈ Sd⪰. Furthermore, from Theorem 3.3 of Kim, Kojima, and
Yamashita (2003), (4.31) holds if and only if:

⟨W,T ⟩ ≥ 0 ∀W ∈ Sd⪰ : (Wk,j = ωkωj , ∀k, j ∈ JdK\{i}). (4.33)

Thus the constraint (4.31) potentially implies an infinite family of S∗⪰ cuts, including the original S∗⪰
cut ⟨ωω′, T ⟩ ≥ 0. We do not explore how to scale these Ksqr constraints to recover the guarantees
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from Section 4.3.2 for an SOCP solver with an absolute feasibility tolerance. Note that the choice of
i ∈ JdK is arbitrary, so we can derive d different Ksqr constraints of the form (4.31). For strengthening
separation or certificate K∗ cuts, Pajarito heuristically picks one of the d possible Ksqr constraints
by choosing i as the coordinate of the largest absolute value in ω.

We now apply this strengthening procedure to the initial fixed S∗⪰ extreme rays described in
Section 4.6.4. Letting ω = ei ± ej for each i, j ∈ JdK : j > i in (4.31), we get the d(d− 1)/2 initial
fixed Ksqr constraints:

(Ti,i, Tj,j ,
√
2Ti,j) ∈ Ksqr ∀i, j ∈ JdK : j > i. (4.34)

These constraints enforce that every 2× 2 principal matrix of T is PSD, a necessary but insufficient
condition for T ∈ Sd⪰. Ahmadi and Hall (2015) discuss an SOCP inner approximation of the PSD
cone called the cone of scaled diagonally dominant (SDD) matrices. Our initial fixed SOCP OA is
the dual SDD matrix cone, a strict subset of the polyhedral dual DD matrix cone that corresponds
to our initial fixed polyhedral OA from Section 4.6.4.

4.7 Computational experiments

As we emphasize in Section 4.5, our algorithmic implementations in Pajarito differ from Algorithm 1
because of our practical decision to use external MILP solvers through a limited, solver-independent
interface. In Section 4.7.1, we summarize our metrics for comparing the performance of MI-conic
solvers, and we describe our presentation of tables and performance profile plots. In Section 4.7.2, we
benchmark Pajarito and several MISOCP solvers on a library of MISOCP problems. In Section 4.7.3,
we compare the performance of several of Pajarito’s algorithmic variants on applied MI-conic problems
over exponential, second order, and PSD cones. The scripts and results data for all experiments
are available in the supplement at http://github.com/chriscoey/PajaritoSupplement. These
experiments were run in 2018 with Pajarito version 0.5.1.

4.7.1 Presentation of results

We define a ‘solver’ as a MathProgBase solver object given a particular set of algorithmic options.
Each solver we test is deterministic, i.e. it performs consistently on a particular dedicated machine.
We define an ‘instance’ as a particular MI-conic problem that is known to be feasible and bounded.
For a given instance, a solver may return a ‘solution’, which is a vector representing an assignment
of the variables (not necessarily feasible).

First, we measure solver performance on a particular testset of instances by counting the number
of instances for which the solver finds an approximately optimal solution. To be more precise, we
use the following four categories to characterize a solver’s apparent success or failure on an instance.

ex: (exclude) means either the solver incorrectly claims the instance is infeasible or unbounded,
or the solver returns a solution it claims is approximately optimal but we detect one of the
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following inconsistencies.

• The solution significantly violates at least one primitive cone constraint or integrality
constraint. The absolute violation on a cone constraint is computed as the worst violation
over the inequalities defining the cone (see Section 4.6; for the PSD cone, this is nonnega-
tivity of the minimum eigenvalue). Our tolerances are 10−6 for linear/polyhedral cones,
10−5 for second order and exponential cones, and 10−4 for PSD cones. Variable-wise
integrality violation is computed as distance to the nearest integer, and our tolerance is
10−6.

• The relative objective gap condition (4.16) (which matches that used by most MIP solvers)
for optimality is significantly violated. We set the constant θ = 10−5 (to avoid division
by zero) and use the tolerance ϵ = 10−5.

• The objective value or objective bound significantly differs from that of a preponderance
of other solvers (assessed semi-manually from output of our scripts).

co: (converge) means the solver returns a solution that it claims is approximately optimal (and it is
not excluded for the reasons above).

li: (reach limit) means the solver does not terminate before the time limit, or (rarely) the solver
reaches a memory limit and is forced to terminate.

er: (error) means the solver crashes or terminates with an error message.

Second, we compare aggregate measures of solver performance. Recall the definition of the shifted
geometric mean in (1.52), which decreases the relative influence of smaller values, thus giving less
weight to easy instances (small values are preferable for all of our metrics). We shift by 10 seconds
for execution times, 1 for iteration counts, and 10 for MIP-solver-reported node counts. To compare
a list of solvers S1, . . . , Sn on a particular performance metric (such as execution time), we compute
for each solver Si the following three shifted geometric means, each over a different subset of the
testset.

aco: (all solvers converge) is computed over the instances for which S1, . . . , Sn all have a co status.

tco: (this solver converges) is computed over the instances for which Si has a co status.

all: (all instances) is computed over all instances. Missing execution times are set to the time limit,
and missing iteration/node counts are ignored.

Finally, we employ performance profiles (Dolan and Moré, 2002; Gould and Scott, 2016) to
visually compare the relative execution times and iteration or node counts of pairs of solvers. Again,
we decrease the relative influence of easy instances by shifting the metrics by the same shift values
above. We describe how to interpret performance profiles at the end of Section 1.9.2.
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4.7.2 Mixed-integer second order conic solver comparisons

Our open source Pajarito solvers, Iter-GLPK and Iter-CBC, use the iterative method (see Sec-
tion 4.5.2.2) with ECOS (Domahidi, Chu, and Boyd, 2013) for continuous conic subproblems and
CBC or GLPK for MILPs. We do not test Pajarito’s MIP-solver-driven (MSD) method (see Sec-
tion 4.5.2.3) with the CBC or GLPK MIP solvers because their support for MathProgBase callbacks
is limited. Our two restricted-license Pajarito solvers, Iter-CPLEX (using the iterative method) and
MSD-CPLEX (using the MSD method), call MOSEK’s continuous conic solver and CPLEX’s MILP
solver.

The open source Bonmin solver package is described in detail by Bonami, Biegler, et al. (2008)
and uses CBC to manage branching and Ipopt to solve continuous NLP (derivative-based nonlinear
programming) subproblems. We are unaware of any mainstream open source solvers designed for
MISOCP. The functional representation of the second order cone has points of nondifferentiability
that may cause Bonmin to crash or suffer numerical issues. Our Bonmin-BB solver uses the nonlinear
B&B method (no polyhedral approximation), Bonmin-OA uses the B&B OA method, and Bonmin-
OA-D is equivalent to the Bonmin-OA solver but applied to transformed instances that use the
second order cone EF we describe in Section 4.5.3.

Our two restricted-license MISOCP solvers are SCIP and CPLEX. Unlike Bonmin, these MISOCP
solvers use the second order cone EF internally. CPLEX is available under an academic or commercial
licence, and SCIP is an academic solver that is not released under an OSI-approved open source
license. We use CPLEX version 12.7.0 and SCIP version 4.0.0.

These nine MISOCP solvers are each given a relative optimality gap tolerance of 10−5. The
SCIP and CPLEX solvers are given an absolute linear-constraint-wise feasibility tolerance of 10−8,
and CPLEX is given an integrality tolerance of 10−9. The MILP solvers used by Pajarito are given
an absolute linear-constraint-wise feasibility tolerance of 10−8, an integrality tolerance of 10−9,
and a relative optimality gap tolerance of 0 for Iter-GLPK, Iter-CBC, and Iter-CPLEX and 10−5

for MSD-CPLEX. Due to limited resources, we set a one hour time limit for each run of a solver
on an instance, and run all solvers (including the MILP and conic solvers called by Pajarito) in
single-threaded mode.

We use a testset of 120 MISOCP instances drawn from the larger CBLIB library compiled by
Friberg (2016). The testset contains randomly selected subsets of most of the major families of
models in CBLIB. We exclude instances that are not bounded and feasible, or are solved in under 5

seconds by all solvers, or are unable to be solved by all solvers in under an hour. Our computations
are performed on the Amazon EC2 cloud computing platform with m4.xlarge computing nodes
having 16GB of RAM. As the computing nodes are virtual machines, timing results on EC2 are
subject to random variability, but repeated runs suggest the variation is sufficiently small to avoid
impacting our conclusions. The nodes run Ubuntu 16.04 with Julia version 0.6.0. Version information
for the Julia packages can be obtained from the supplement.

Table 4.1 summarizes the status counts and shifted geometric means of performance metrics
on instance subsets (explained in Section 4.7.1) for the nine MISOCP solvers on the 120 MISOCP
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instances. The Bonmin solvers fail on most instances, and overall solve significantly fewer instances
than the open source Pajarito solvers. Pajarito tends perform faster using CBC rather than GLPK.
However, for most of the 9 excluded instances from Iter-CBC, we verify that CBC is responsible
for the significant integrality violations that result in exclusion. Figure 4.4 (left) is a performance
profile (explained in Section 4.7.1) comparing the execution times of the open source Pajarito (with
CBC) solver and the instance-wise best of the three Bonmin solvers. From these results, we claim
that Pajarito with ECOS and CBC is the fastest and most reliable open source MISOCP solver.

Using CPLEX, Pajarito’s MSD method is significantly faster and more reliable than its iterative
method. For MSD-CPLEX, the two errors occur where Pajarito claims a solution is suboptimal and
has an objective gap no worse than 1.04×10−5, and the one exclusion occurs where Pajarito’s solution
violates a linear constraint by 9.78 × 10−6. The performance profile Figure 4.4 (right) compares
the execution times of Pajarito’s MSD method using CPLEX’s MILP solver against CPLEX’s
specialized MISOCP solver. The execution time comparisons between CPLEX and MSD-CPLEX
are ambiguous, however we argue that, at least by our metrics, Pajarito is a more reliable MISOCP
solver.

Table 4.1: MISOCP solver performance summary.

statuses time (s)

solver co li er ex aco tco all

open source

Bonmin-BB 34 44 11 31 38.0 83.8 463
Bonmin-OA 25 53 29 13 64.2 64.5 726
Bonmin-OA-D 30 48 29 13 15.1 61.6 610
Iter-GLPK 56 60 3 1 2.0 29.7 377
Iter-CBC 78 30 3 9 1.6 50.3 163

restricted

SCIP 74 35 8 3 3.2 41.5 160
CPLEX 90 16 5 9 0.9 16.1 50
Iter-CPLEX 86 26 0 8 0.4 37.0 106
MSD-CPLEX 97 20 2 1 0.4 18.2 56

4.7.3 Comparisons of algorithmic variants

To compare the performance of several of Pajarito’s algorithmic variants, we use a testset of 95
MI-conic instances. These instances are all bounded and feasible and come from the following four
sources. Formulations for instances we generated can be found at https://github.com/JuliaOpt/
Pajarito.jl/tree/master/examples.

Discrete experiment design (14 instances). Boyd and Vandenberghe (2004, Chapter 7.5) describe
MI-convex experiment design problems. We generate A-optimal and E-optimal instances that
include PSD cones, and D-optimal instances that include PSD and exponential cones.

Portfolios with mixed risk constraints (16 instances). We formulate a portfolio problem that
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Figure 4.4: Performance profiles of MISOCP solver execution time. Left: Open source Bonmin
(instance-wise best of 3) and Pajarito iterative solvers. Right: CPLEX MISOCP and Pajarito MSD
solvers.
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maximizes expected returns subject to some combinatorial constraints on stocks and three
types of convex risk constraints on subsets of stocks with known covariances. Each instance
includes multiple exponential cones from entropy risk constraints, second order cones from
norm risk constraints, and PSD cones from robust norm risk constraints.

Retrofit-synthesis of process networks (32 instances). We select a subset of the two CBLIB
families ‘syn’ and ‘rsyn’. Each instance includes exponential cones.

A subset of the MISOCP testset (33 instances). We select a subset of the CBLIB families
‘estein’, ‘ccknapsack’, ‘sssd’, ‘uflquad’, and ‘portfoliocard’.

We use Pajarito with Gurobi version 7.5.2 as the MILP solver and MOSEK version 9.0.0.29-
alpha as the continuous conic solver. Note MOSEK 9 is the first version to recognize exponential
cones. Pajarito is given a relative optimality gap tolerance of 10−5. Gurobi is given an absolute
linear-constraint-wise feasibility tolerance of 10−8, an integrality tolerance of 10−9, and a relative
optimality gap tolerance of 0 when the iterative method is used and 10−5 when the MSD method is
used. We set a one hour time limit for each run of a solver on an instance, and limit Gurobi and
MOSEK to 8 threads. We run the computations on dedicated hardware with 16 Intel Xeon E5-2650
CPUs (2GHz) and 64GB of RAM. Repeated runs suggest the variation is sufficiently small to avoid
impacting our conclusions. The machine runs Ubuntu 17.10 and Julia 0.6.2. Version information for
the Julia packages can be obtained from the supplement.
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4.7.3.1 Initial fixed cuts, certificate cuts, and separation cuts

Recall from Section 4.5.2 that Pajarito by default uses three different types of K∗ cuts for non-
polyhedral cones: initial fixed cuts, certificate cuts (from conic subproblems), and separation cuts
(which separate infeasible OA solutions found by the MILP solver). We compare the following four
important algorithmic variants of Pajarito that use different combinations of these three types of K∗

cuts.

c: only add certificate cuts and only obtain feasible solutions from the primal subproblems.

cs: modify c above to add separation cuts on repeated integral OA solutions and accept approximately
feasible OA solutions.

ics: modify cs above to add initial fixed cuts; this is Pajarito’s default algorithm described in
Section 4.5.2.

is: do not solve conic subproblems, only add initial fixed cuts and separation cuts, and accept
approximately feasible OA solutions.

Table 4.2 summarizes the status counts and shifted geometric means of performance metrics on
instance subsets. When using certificate cuts only (c), Pajarito often fails to converge numerically
to the desired optimality gap (though typically it comes close). By also using separation cuts on
repeated integer sub-solutions and accepting approximately conic feasible OA solutions as incumbents,
Pajarito is able to converge on many more instances. Starting with initial fixed cuts (ics) further
increases Pajarito’s robustness, particularly for the MSD method. Comparing the ics variant against
the separation-based variant is, we see significantly faster overall performance and fewer iterations
or nodes for the subproblem-based ics variant. The performance profiles in Figure 4.5 compare the
execution times or iteration/node counts for the ics and is solvers, demonstrating superiority of
Pajarito’s default ics method.

Table 4.2: K∗ cut types performance summary.

statuses time (s) subproblems iters or nodes

cuts co li er ex aco tco all aco tco all aco tco all

Iter

c 72 1 21 1 5.6 6.5 7.2 5.3 5.4 4.2 5.5 5.5 4.5
cs 88 1 3 3 5.6 12.7 14.4 5.3 7.0 6.4 5.5 7.2 6.8
ics 89 2 0 4 4.7 11.6 14.8 4.2 5.9 6.0 4.3 6.2 6.3
is 84 1 0 10 8.4 14.5 22.1 - - - 13.4 16.5 18.1

MSD

c 76 0 18 1 2.4 3.4 3.5 12.6 15.8 12.7 223 438 348
cs 88 0 5 2 3.3 6.5 7.8 19.0 26.8 24.9 295 843 815
ics 92 0 1 2 2.2 6.3 6.5 15.6 24.6 25.0 273 796 857
is 84 1 0 10 3.1 5.3 7.5 - - - 522 932 1345
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Figure 4.5: K∗ cut types performance profiles.
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4.7.3.2 Extreme ray disaggregation

To test the K∗ extreme ray disaggregation techniques in Sections 4.4.1 and 4.6, we run Pajarito
using only certificate cuts (the c variant in Section 4.7.3.1), with and without disaggregation. Note
that disabling disaggregation disables use of the second order cone EF, which has no benefit without
disaggregation.

Table 4.3 summarizes the status counts and shifted geometric means of performance metrics
on instance subsets, and the performance profiles in Figure 4.6 compare the execution times or
iteration/node counts. For both the iterative and MSD methods, disaggregation improves performance
on nearly every solved instance. For the iterative method, it enables the pure-certificate-based
variant to converge on more than twice as many instances, and it more than halves the execution
time and iteration count. Without disaggregation, the MSD method manages to converge on many
more instances than the iterative method. Disaggregation greatly improves the performance of the
MSD method, though the comparison is not quite as striking as for the iterative method.

Table 4.3: K∗ cut disaggregation performance summary.

statuses time (s) subproblems iters or nodes

disag co li er ex aco tco all aco tco all aco tco all

Iter off 33 10 52 0 11.0 11.1 17.2 11.6 12.4 11.8 12.0 12.7 12.5
on 72 1 21 1 4.5 6.5 7.2 4.0 5.4 4.2 4.3 5.5 4.5

MSD off 51 3 41 0 1.7 6.2 6.7 15.5 50.5 28.0 70 613 261
on 76 0 18 1 1.1 3.4 3.5 7.6 15.8 12.7 36 438 348

4.7.3.3 Certificate-based scaling

Finally, we test the K∗ certificate cut scaling techniques for an LP solver with a feasibility tolerance,
described in Section 4.3.2. We run Pajarito using only certificate cuts (the c variant in Section 4.7.3.1),
with and without scaling. We set a larger feasibility tolerance on these four Pajarito solvers (δ = 10−6

instead of 10−8, which we used for all other tests), to reduce the chance that any observed effects
are caused by numerical issues near machine epsilon.

Table 4.4 summarizes the status counts and shifted geometric means of performance metrics
on instance subsets, and the performance profiles in Figure 4.7 compare the execution times or
iteration/node counts. For both the iterative and MSD methods, using scaling improves the
robustness of the pure-certificate-based variant, allowing us to converge on 6 or 7 additional instances.
On the subset of instances solved by all four solvers (the aco columns), scaling slightly reduces
conic subproblem counts and iteration or node counts, but has small and ambiguous effects on the
execution times.
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Figure 4.6: K∗ cut disaggregation performance profiles.
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Table 4.4: K∗ certificate cut scaling performance summary (larger δ).

statuses time (s) subproblems iters or nodes

scale co li er ex aco tco all aco tco all aco tco all

Iter off 63 1 28 3 4.5 4.4 6.6 5.2 5.0 4.2 5.2 5.1 4.4
on 69 1 22 3 4.4 5.2 6.7 4.9 4.9 3.9 5.0 5.0 4.0

MSD off 60 0 30 5 2.7 2.8 3.2 12.4 14.5 12.8 193 240 366
on 67 0 26 2 2.9 4.0 3.9 11.9 15.8 12.1 188 392 393
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Figure 4.7: K∗ certificate cut scaling performance profiles.
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Chapter 5

Formulations and oracles for
mixed-integer conic optimization

Abstract

We introduce our open source MI-conic solver MOIPajarito, the new MathOptInterface-based
successor to Pajarito. In addition to several new algorithmic features not available in Pajarito,
MOIPajarito has a generic cone interface inspired by that of Hypatia, allowing it to be easily
extended for new cones. In this chapter, we describe our implementations of the three broad
classes of cones introduced in Chapter 2. Our K∗ cut techniques enable MOIPajarito to solve
natural formulations of a wide variety of applied examples. We also describe extended formulations
(EFs) for vector spectral function cones that can accelerate MOIPajarito by tightening polyhedral
relaxations. Finally, we develop efficient MI-conic formulations for homogenized piecewise linear
constraints, which enable formulating tight relaxations of common types of nonconvex constraints
and disjunctions of piecewise linear constraints. One of our formulations is the first logarithmic-
sized MI-convex formulation for a finite union of convex sets with different recession cones. Using
conic EFs, we extend our MI-conic relaxation techniques to the high-dimensional nonconvex
setting.

5.1 Introduction

We use the following general form for MI-conic problems, over variable x ∈ Rn:

infx c′x : (5.1a)

b−Ax = 0, (5.1b)

h−Gx ∈ K, (5.1c)

xi ∈ Z ∀i ∈ JIK, (5.1d)

where c ∈ Rn, b ∈ Rp, and h ∈ Rq are vectors, A : Rn → Rp and G : Rn → Rq are linear maps,
I ≤ n, and K ⊂ Rq is a Cartesian product K = K1 × · · · × KK of proper cones. Relaxing the
integrality constraints (5.1d), we recover Hypatia’s primal conic form discussed in Section 1.4.1.
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5.1.1 Solving mixed-integer conic problems

In Section 4.2, we present the first conic-duality-based branch-and-bound outer approximation
(OA) algorithm for MI-conic optimization problems, and in Section 4.5 we describe our algorithmic
implementations in Pajarito.jl. Pajarito is succeeded by our new open source MI-conic solver
MOIPajarito.jl, which we introduce here in Section 5.2.1. Like Pajarito, MOIPajarito uses an
external MIP solver to solve polyhedral relaxations and an external continuous conic solver to solve
primal-dual conic subproblems that provide feasible solutions and K∗ cuts for refining the polyhedral
relaxations.

A key feature of MOIPajarito is its generic cone interface, inspired by that of Hypatia. This
enables the user to add support for new convex cones through the implementation of a small list of
oracles, which we list in Section 5.2.2. The oracles for initial cuts, subproblem cuts, and separation
cuts add K∗ cuts directly to the MIP solver’s OA model. In Section 5.2.4, we discuss optional oracles
that enable internal support for extended formulations (EFs), generalizing the approach we describe
for the second order cone EF Section 4.6.3.

In addition to the standard second order, PSD, and three-dimensional exponential and power cones
(see Section 2.2), we predefine around a dozen cones (and their dual cones) through MOIPajarito’s
cone interface. These cones are recognized by Hypatia and belong to the three broad classes
introduced in Chapter 2. In this chapter, we describe our K∗ cut oracle implementations for these
classes. For each class, we implement MI-conic formulations for applied examples. We perform
computational testing to compare MOIPajarito’s performance under natural formulations (NFs) and
equivalent standard conic EFs.

In Section 5.3, we consider the PSD slice cones from Section 2.2.1, such as polynomial weighted
sum-of-squares (SOS) cones and sparse PSD-completable matrix cones. In Section 5.4, we discuss
the infinity/spectral norm cones from Section 2.2.2, particularly the matrix spectral and nuclear
norm epigraph cones. We formulate four examples over the SOS and PSD-completable cones
in Section 5.3.3 and three examples over the spectral/nuclear norm cones in Section 5.4.4. Our
computational results show that MOIPajarito solves the NFs much more efficiently and reliably than
it solves the EFs over PSD cones.

Finally in Section 5.5, we handle the spectral function cones from Section 2.2.3. For geometric
mean cones and vector separable spectral function cones, we describe how MOIPajarito optionally
manages EFs internally, by converting dual solutions and rays from the conic subproblems in the
NF space to K∗ cuts for the OA model in the EF space. We illustrate the impact of these EFs
on the strength of polyhedral relaxations. We formulate four spectral function cone examples in
Section 5.5.4. Our results demonstrate that the internally-managed EFs for the geometric mean
cones and vector separable spectral function cones can reduce MOIPajarito’s iteration counts and
solve times significantly. For the matrix domain spectral function cones, MOIPajarito generally
solves the NFs faster and more reliably than it solves the much larger EFs (which are not internally
managed due to their complexity).
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5.1.2 Advanced mixed-integer conic formulations

In Section 5.6, we develop MI-conic formulations for disjunctions and relaxations of common types
of nonconvex constraints. We start by discussing tight MI-conic formulations for finite unions of
convex sets. Then, for a nonconvex constraint involving the graph of a univariate convex function,
we describe a simple sandwiching relaxation expressible with convex constraints and SOS2 (special
ordered sets of type two) constraints. We extend this technique for the three-dimensional graph
of the perspective function of a univariate convex function. This approach homogenizes standard
univariate piecewise linear (PWL) formulations, utilizing the conic structure of the perspective to
obtain simpler and smaller representations than can be achieved with a naive bivariate discretization.

We describe MISOCP and MILP formulations for SOS2 constraints, specializing these for the
homogenized PWL setting. One of our formulations is the first MI-convex formulation to use
only a logarithmic number of binary variables to represent a finite union of convex sets with
different recession cones. The homogenized PWL formulations allow us to write tight formulations
of disjunctions of PWL constraints, or MI-conic relaxations of disjunctions of nonconvex constraints.

By adapting conic EFs to the nonconvex setting, we extend these relaxation techniques to higher
dimensions. This allows us to build tight and efficient MI-conic relaxations of common types of
multivariate nonconvex constraints, for example a norm equality u = ∥w∥. In Section 5.6.5, we
describe three examples involving nonconvex constraints or disjunctions over convex or nonconvex
constraints, and we perform computational testing to compare formulations.

5.2 MOIPajarito and cone oracles

5.2.1 Software architecture

In Section 4.5, we introduce Pajarito, our first open source MI-conic solver. Pajarito was written in
Julia for MathProgBase, a low-level solver interface that has since been superseded by the significantly
more powerful MathOptInterface (MOI) (Benoit Legat et al., 2020). The development of MOI was
in part motivated by the desire for much more general conic modeling. Whereas MathProgBase
and Pajarito only support the standard nonnegative, (rotated) second order, exponential, and PSD
cones, MOI supports many more predefined cones and allows users or packages to define new cones
(as subtypes of MOI.AbstractVectorSet). Users can model optimization problems over these cones
using the convenient high-level modeling language JuMP (Dunning, Huchette, and Lubin, 2017). In
March of 2022, MOI version 1.0 and JuMP version 1.0 were released.

The maturation of MOI has prompted us to replace Pajarito with a more powerful MOI-based
successor, designed and written from scratch. We introduce two new Julia packages: MOIPajarito.jl,
which is our new MI-conic solver, and PajaritoExtras.jl, which extends MOIPajarito to support
more cones.1 Like Pajarito, MOIPajarito uses external MIP and continuous conic solvers through

1Currently, these packages are available at https://github.com/chriscoey/MOIPajarito.jl and https://github.
com/chriscoey/PajaritoExtras.jl. These package names and URLs may change in future, but they can be located
from the author’s GitHub page at https://github.com/chriscoey.
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the MOI’s solver-independent interface.
MOIPajarito has iterative and MIP-solver-driven (single tree) algorithms, conic subproblem-based

and separation-based variants, and a similar set of algorithmic options to Pajarito. MOIPajarito
also has some algorithmic features not available in Pajarito, such as support for SOS1/SOS2
constraints (currently limited to separation-based algorithms), separation K∗ cuts for rays from an
unbounded continuous relaxation, the ability to perform optimization-based separation (discussed
in Section 5.2.3), and the ability to pass to the OA (MIP) solver any cones it directly supports
(allowing nonpolyhedral OA).

Inspired by Hypatia’s generic cone interface, MOIPajarito is easily extended to support new
convex cones through the implementation of a small list of oracles. In MOIPajarito itself, we have
predefined the standard second order and PSD cones and three-dimensional exponential and power
cones. In the extension package PajaritoExtras, we add support for a dozen cones that are recognized
by Hypatia. For most of these cones, we also support their dual cones. Since Hypatia is the only
continuous conic solver that supports such a wide variety of cones, when using PajaritoExtras,
MOIPajarito must be used with Hypatia. In the examples folder of PajaritoExtras, we use these
new cones to model a dozen applied MI-conic examples, each with multiple formulation variants.

5.2.2 Cut oracles

We now describe the main cut oracles to be implemented through MOIPajarito’s generic cone
interface for a given cone K. Most of these oracles directly add K∗ cuts to the MIP solver’s OA
model. First, the initial cuts oracle adds a set of K∗ cuts that define a fixed initial polyhedral
relaxation of K. We discuss initial fixed cuts in Section 4.4.2. Second, the subproblem cuts oracle
takes as input a point z ∈ K∗, which MOIPajarito obtains from a dual solution or ray found by the
continuous conic solver, and adds K∗ cuts that are at least as strong as the cut from z itself. We
discuss K∗ cut strengthening and extreme ray decompositions in Section 4.4.1.

Third, the separation cuts oracle takes as input a point s and checks whether s ∈ K; this feasibility
check is approximate and uses a feasibility tolerance (specified as an option to MOIPajarito). If
s is significantly infeasible, the oracle adds at least one separation K∗ cut that makes s infeasible.
Separation cuts are discussed in Section 4.4.3; although they are not needed in theory for a finite-
convergent algorithm, in practice they are often useful when subproblem cuts alone are not sufficient
to tighten the objective gap to the desired optimality tolerances (due to numerical inexactness
of the conic and MIP solvers). In a separation-only algorithm, MOIPajarito does not solve conic
subproblems or add subproblem K∗ cuts. Rather it simply separates infeasible points found by the
OA solver until the OA solution no longer significantly violates the conic constraints. Note the
separation-only algorithm is not known to be finitely convergent in general.

5.2.3 Optimization-based separation

For some cones, we do not know an analytic procedure for checking feasibility of a point or obtaining
separation cuts. In such cases, we can use optimization. Suppose we have a cone K and a point
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s̄ ̸= 0 (since the origin is always feasible for K). We set up the following simple separation problem:

min 0 : (5.2a)

s̄ ∈ K. (5.2b)

Clearly, this problem (which has no variables or primal equalities) is feasible if and only if s̄ is
feasible. The conic dual of this problem is:

maxz − s̄′z : (5.3a)

z ∈ K∗. (5.3b)

This dual can be interpreted as finding a point z in K∗ maximizing the violation on a potential
separation cut s̄′z ≥ 0. Note z = 0 is feasible for the dual, so if the dual has an optimal solution, its
value is nonnegative. If the primal problem (5.2b) is feasible, then its objective value is zero, hence
the dual has an optimal value of zero also. If the primal is infeasible, then the dual has an improving
ray z ∈ K∗ with s̄′z < 0. Therefore s′z ≥ 0 is a K∗ cut that is violated by the infeasible point s̄.

Hypatia is an ideal tool for solving this primal-dual separation problem. This is our approach
for sparse PSD-completable cones and primal SOS cones, as discussed in Section 5.3.2. Since there
are no primal variables, Hypatia’s QR-Cholesky linear system solver needs no matrix factorizations
besides Hessian factorizations (if no closed form inverse Hessian product is available); see Section 1.6.
The Hypatia model/solver object is constructed once for each unique cone, and whenever we need
to solve the separation problem for a new point s̄, we simply update the conic constraint constant
vector h in-place (using Hypatia’s model modification interface). Generally, Hypatia solves these
problems so quickly and reliably that optimization-based separation does not become a bottleneck
in MOIPajarito.

5.2.4 Extended formulations

Tawarmalani and Sahinidis (2005) and Hijazi, Bonami, and Ouorou (2014) observe that, for smooth
mixed-integer nonlinear problems, simple EFs that exploit separability can be used to accelerate OA
algorithms. Intuitively, EFs can tighten polyhedral relaxations, because a polynomial number of
cuts in EF space may project to an exponential number of cuts in NF space. Vielma, Dunning, et al.
(2017) show that using a conic EF for the second order cone can greatly improve MISOCP solver
performance.

In Section 4.6.3, we discuss how Pajarito optionally manages the second order cone EF in the
OA model while still using the NF in the continuous conic subproblems, to avoid slowing down
the conic solver. This requires extending primal solutions and K∗ cuts from the NF space of
the conic subproblem to the EF space of the OA model. MOIPajarito generalizes this approach,
allowing any cone to be associated with an EF by specifying EF oracles through the generic cone
interface. Currently, PajaritoExtras only internally manages EFs that can be written in terms of
linear constraints and multiple three-dimensional cones. We have predefined the second order cone
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EF through this interface, as well as EFs for geometric mean cones and vector separable spectral
function cones, which we discuss in Section 5.5.

To associate a cone K with an EF that will be internally managed by MOIPajarito, two cone
oracles must be defined. The auxiliary variables oracle adds the appropriate auxiliary variables
to the OA model, stores these in a data structure associated with the cone, and adds any linear
constraints associated with the EF. The primal solution extender oracle takes an NF space point
s ∈ K obtained by the continuous conic solver during a subproblem, extends it to a feasible solution
in EF space, and sets the full solution as an OA model warm-start (for the iterative algorithm in
Section 4.5.2.2) or heuristic callback solution (for the MIP-solver-driven algorithm in Section 4.5.2.3).
Furthermore, the three K∗ cut oracles (initial cuts, subproblem cuts, and separation cuts) described
in Section 5.2.2 are modified to extend any cuts from the NF space into the EF space.

5.2.5 Computational testing setup

Using Julia and JuMP, we build instances of our examples in the PajaritoExtras repository. These
instances enable computational testing of MOIPajarito to compare performance under different
formulations or algorithmic options. For simplicity, all example instances are feasible and bounded
and are randomly generated on-the-fly (using random seeds to ensure reproducibility).

We use MOIPajarito’s iterative algorithm rather than the MIP-solver-driven (single-tree) algo-
rithm. The basic implementations of these algorithms are described in Section 4.5.2.2. For initial
fixed cuts, we make MOIPajarito only add variable bound constraints. These options allow us
to directly compare (across different formulations or algorithmic options) MOIPajarito’s iteration
counts, which are a fairly reliable measure of the strength/quality of polyhedral relaxations.

Our scripts for running these benchmarks and analyzing raw results are available in the Pajari-
toExtras repository. We perform all computational experiments and results analysis on dedicated
hardware with an AMD Ryzen 9 3950X 16-core processor (32 threads) and 128GB of RAM. We
use Ubuntu 21.10, Julia 1.9, MOIPajarito 0.0.0, and PajaritoExtras 0.0.0. For MOIPajarito, we set
Hypatia 0.7.0 as the continuous conic solver and Gurobi 9.5 as the MIP OA solver.

We use a time limit of 600 seconds for all instances. We set MOIPajarito’s feasibility tolerance
to 10−7, relative optimality gap tolerance to 10−5, and absolute optimality gap tolerance to 10−4.
We set various feasibility and optimality gap tolerances for Gurobi to 10−9 and for Hypatia to
between 10−8 and 10−10. For instances with very sparse constraint matrices, Hypatia uses the
sparse symmetric indefinite linear system solver technique, otherwise it uses the dense QR-Cholesky
technique with extensive preprocessing (see Section 1.6).

Across equivalent instances, we compare MOIPajarito’s termination statuses, iteration counts
(or MIP solver node counts, where specified), and solve times in seconds. These solver statistics are
reported in tables, under the columns st, it, and time respectively. In these tables, asterisks indicate
missing data, and we use the following codes for the termination status columns:

co: the solver claims it has an approximate optimality certificate,
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tl: the solver stops itself due to a solve time limit of 600 seconds,

er: the solver encounters a numerical convergence error.

For each instance, the analysis script verifies that objective values approximately match between
each pair of corresponding solve runs with co status codes. For most examples, we also verify the
solutions are approximately feasible.

5.3 Positive semidefinite slice cones

In Section 2.5 we discussed the PSD slice cones. Consider a cone K that can be characterized as an
intersection of slices of the PSD cone:

K := {s ∈ Rq : Λl(s) ⪰ 0,∀l ∈ JrK}, (5.4)

where Λl : Rq → Sol , ∀l ∈ JrK are linear operators. We note that for K⪰ (the self-dual vectorized
PSD cone), we have r = 1 and q = sd(o), Λ(s) = mat(s), and Λ∗(S) = vec(S). The dual cone is:

K∗ :=
{
s ∈ Rq : ∃S1, . . . , Sr ⪰ 0, s =

∑
l∈JrKΛ

∗
l (Sl)

}
, (5.5)

where Λ∗
l : Sol → Rq is the adjoint linear operator of Λl. K and K∗ belong to our PSD slice cone

class.
We describe Pajarito’s implementation of the real PSD cone K⪰ itself in Section 4.6.4 (though

with different notation). These techniques generalize easily for the complex Hermitian PSD cone
Kc⪰, which is implemented in MOIPajarito. In this section, we further generalize for cones of the
form (5.4), such as the sparse PSD cone KsPSD defined in Section 2.2.1.2, and for cones of the form
(5.5), such as the polynomial weighted sum-of-squares (SOS) cone KSOS defined in Section 2.2.1.3.
Recall for KSOS parametrized by the collection of matrices Pl ∈ Rd×ol ,∀l ∈ JrK, we have:

Λl(s) = P ′
l Diag(s)Pl, (5.6)

Λ∗
l (Sl) = diag(PlΘlP

′
l ). (5.7)

5.3.1 Initial fixed cuts

First consider a constraint s ∈ K, where K is the primal cone (5.4). Since Λ ⪰ 0 implies diag(Λ) ≥ 0,
we can add the

∑
lol initial cuts:

Λl,i,i(s) ≥ 0 ∀l ∈ JrK, i ∈ JolK. (5.8)

A stronger relaxation of Λ ⪰ 0 is the dual cone of the diagonally dominant matrices (Ahmadi and
Hall, 2015). This gives

∑
lol(ol − 1) additional initial cuts:

Λl,i,i(s) + Λl,j,j(s) ≥ ±2Λl,i,j(s) ∀l ∈ JrK, i, j ∈ JolK : i < j. (5.9)
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For KsPSD of side dimension d, all diagonal elements are present in the sparsity pattern, so we
can impose all d diagonal nonnegativity constraints (5.8). For each off-diagonal element in the
sparsity pattern, we can impose the two cuts (5.9). For K∗

SOS, the constraints (5.8) for example have
the simple form: ∑

j∈JqKP
2
l,j,isj ≥ 0 ∀l ∈ JdK, i ∈ JolK. (5.10)

Now consider a constraint s ∈ K∗, where K∗ is the dual cone (5.5). The initial cuts are more ad
hoc, depending on the structure of Λ∗. For K∗

sPSD, which is the cone of PSD-completable matrices
with the given sparsity pattern, we can actually impose the same set of initial cuts as for KsPSD

(diagonal nonnegativity and two cuts for each off-diagonal in the pattern), since these must be
satisfied by any PSD matrix. For KSOS, we can impose the q initial cuts s ≥ 0, since the dual cone
representation shows that s is a sum of diagonals of PSD matrices. This makes intuitive sense as s
represents the evaluations of the polynomial at the q interpolant points within the domain of the
nonnegativity constraint.

5.3.2 Separation cuts

Consider a constraint s ∈ K. Given a point s̄ ∈ Rq, for each l ∈ JrK we form Λl(s̄) and compute its
symmetric/Hermitian eigendecomposition:

Λl(s̄) = VlDiag(σl)V
′
l =

∑
i∈JolKσl,ivl,iv

′
l,i, (5.11)

where the square eigenvector matrix Vl is orthonormal and the eigenvalues σl ∈ Rol are real. If
σl ≥ 0, ∀l, then by (5.4) s̄ ∈ K, so there are no separation cuts to add. Otherwise, for each l ∈ JrK,
we add one separation cut for each negative eigenvalue:

⟨vl,iv′l,i,Λl(s)⟩ ≥ 0 ∀i ∈ JolK : σl,i < 0, (5.12)

which is violated by the infeasible point s̄ because:

⟨vl,iv′l,i,Λl(s̄)⟩ =
∑

k∈JolKσl,k⟨vl,iv
′
l,i, vl,kv

′
l,k⟩ = σl,i < 0. (5.13)

For KsPSD, the extreme separation cuts (5.12) are simply the usual eigenvector cuts for K⪰

projected onto the sparsity pattern. For K∗
SOS, for each l ∈ JrK, we perform an eigendecomposition

of Λl and compute the matrix Ql = PlVl, where the columns of Vl are the eigenvectors corresponding
to negative eigenvalues. The extreme separation cuts (5.12) then have the simple form:∑

j∈JqKQ
2
l,j,isj ≥ 0 ∀l ∈ JdK, i ∈ JolK : σl,i < 0. (5.14)

For a dual cone constraint s ∈ K∗, separation cuts are often harder to derive. In general, we can
use optimization-based separation as described in Section 5.2.3. This is our approach for KSOS and
K∗

sPSD.

177



5.3.3 Examples for dual sparse positive semidefinite and sum-of-squares cones

5.3.3.1 Positive semidefinite completable matrix

Given a symmetric sparsity pattern with some sparse entries unknown, we choose integer values for
a subset of the unknowns such that the resulting sparse symmetric matrix is PSD-completable. We
maximize the minimum eigenvalue of any symmetric completion and restrict the unknown entries
to lie in an interval [−M,M ]. Let d be the side dimension, S ∈ Sd be a sparse matrix containing
the known entries, and S be the sparsity pattern of the completable matrix (including diagonal
entries). The variable x ∈ Rn represents the unknown entries in the lower triangle, and we introduce
an auxiliary variable y ∈ R. Recall K∗

sPSD(S) is the cone of PSD-completable matrices given the
sparsity pattern S. The conic form model is:

maxx,y y : (5.15a)

Me− x ∈ Rn≥, (5.15b)

Me+ x ∈ Rn≥, (5.15c)

vec(S +mat(x)− yI(d)) ∈ K∗
sPSD(S), (5.15d)

x ∈ Zn, (5.15e)

where the mat operator maps the vector x to its corresponding sparse matrix, and the vec operator
maps the sparse matrix with pattern S to a vector of its nonzero lower triangle entries (note these are
simple linear transformations). The standard conic EF for the K∗

sPSD constraint (5.15d) is described
in Section 2.5.3; it uses one K⪰ cone of dimension sd(d) and introduces sd(d)−|S| auxiliary variables
corresponding to the zeros in the sparsity pattern S.

We generate random instances of (5.15) for various side dimensions d. First, we generate the
sparsity pattern S from a matrix with sparsity factor approximately d−1/2, and we include all
diagonal elements. Then we select approximately 70% of the elements in S to be known elements.
Our approach ensures that all instances are feasible and bounded. Our results are summarized in
Table 5.1. The NF converges on all instances up to size d = 55 within the time limit, but the EF
hits a time limit or encounters numerical convergence difficulties on all instances larger than d = 30.

5.3.3.2 Polynomial facility location

We formulate a capacitated facility location problem with nonnegative polynomial flows over
continuous time, from time t = 0 to t = 1. Suppose we have facilities i ∈ JnK and customers j ∈ JmK.
The fixed cost of opening facility i is fi ∈ R≥ and its maximum output rate is ui ∈ R≥. The binary
variable xi is one if and only if facility i is opened. The demand rate of customer j is dj ∈ R≥ and
the cost per unit of flow from i to j is ci,j ∈ R≥. Customers can be served by multiple facilities. Each
polynomial variable yi,j ∈ R1,d[t] (i.e. the ring of univariate polynomials in t of maximum degree
d) represents the flow rate from i to j over t ∈ [0, 1]. We seek to minimize total cost (of opening
facilities and shipping units of flow on arcs) while satisfying the capacity limit of each facility and
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Table 5.1: Positive semidefinite completable matrix solver statistics.

nat ext

d st it time st it time

10 co 0 0.0 co 0 0.0
15 co 7 2.8 co 7 1.6
20 co 27 1.5 co 47 5.9
25 co 66 5.9 tl 47 600
30 co 68 9.6 co 65 19
35 co 70 19 er 45 36
40 co 114 38 er 64 67
45 co 1026 550 tl 15 600
50 co 223 174 er 32 60
55 co 462 443 tl 20 600
60 tl 467 600 tl 26 600
65 tl 384 600 er 32 194

the demand of each customer. The high-level mixed-integer polynomial model is:

minx,y f ′x+
∑

i∈JnK,j∈JmKci,j
∫ 1
0 yi,j(t) dt : (5.16a)

x ∈ {0, 1}n, (5.16b)∑
j∈JmKyi,j(t) ≤ uixi ∀i ∈ JnK, t ∈ [0, 1], (5.16c)∑
i∈JnKyi,j(t) ≥ dj ∀j ∈ JmK, t ∈ [0, 1], (5.16d)

yi,j(t) ≥ 0 ∀i ∈ JnK, j ∈ JmK, t ∈ [0, 1]. (5.16e)

Since nonnegativity of univariate polynomials over basic semialgebraic domains is equivalent to
membership in a KSOS cone, we can formulate an exact mixed-integer conic representation of (5.16).
Similar to the three SOS examples in Section 2.3 and following the approach in Papp and Yıldız
(2019), we select U =

(
1+d
1

)
= 1 + d interpolant basis points in [0, 1]. To parametrize KSOS(P ), we

set up the collection of matrices P as described in Section 2.3.5. From the interpolation points and
the domain [0, 1], we compute a vector of quadrature weights w ∈ RU , which allow us to express
the integrals in the objective linearly. The new variables yi,j ∈ RU ,∀i ∈ JnK, j ∈ JmK represent the
values of the polynomials at the U interpolant basis points (from which we can perform a linear
transformation using a Vandermonde matrix to obtain coefficients on the degree d monomial basis).
The conic form model is:

minx,y f ′x+
∑

i∈JnK,j∈JmKci,jw
′yi,j : (5.17a)

uixie−
∑

j∈JmKyi,j ∈ KSOS(P ) ∀i ∈ JnK, (5.17b)∑
i∈JnKyi,j − dje ∈ KSOS(P ) ∀j ∈ JmK, (5.17c)

yi,j ∈ KSOS(P ) ∀i ∈ JnK, j ∈ JmK, (5.17d)
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x ∈ {0, 1}n. (5.17e)

The standard conic EF for each of the m+n+mn KSOS(P ) constraints is described in Section 2.5.2;
it uses multiple K⪰ cones and introduces auxiliary variables. Note that whereas in the continuous
polynomial minimization example in Section 2.3.5 we could use a conic dual formulation with fewer
primal variables, we cannot take that approach here because of the integrality constraints.

We generate random instances of (5.17) with polynomial degree d = 6, varying the number of
facilities n and letting the number of customers be m = 2n. First, we generate random values for the
parameters, then we solve small polynomial minimization problems (using Hypatia) to determine
how much to increase the values of the capacity limits ui to allow total demand to be met. This
ensures that the instances are feasible and bounded. Our results are summarized in Table 5.2. The
NF converges on all instances up to size n = 40 within the time limit, but the EF hits a time limit
or encounters numerical convergence difficulties on all instances. Note that very few iterations are
needed to converge, typically around two. We verify feasibility of the solutions returned by solving a
small polynomial minimization problem for each SOS constraint.

Table 5.2: Polynomial facility location solver statistics.

nat ext

n st it time st it time

5 co 1 0.2 er 1 2.0
10 co 2 1.2 er 1 19
15 co 2 6.1 tl 4 600
20 co 2 20 tl 3 602
25 co 3 51 tl 2 611
30 co 3 125 tl 0 614
35 co 2 127 tl 0 603
40 co 3 332 tl 0 601
45 tl 4 604 ∗ ∗ ∗
50 tl 3 606 ∗ ∗ ∗

5.3.3.3 Polynomial two-stage stochastic problem

We have n different crops and m equal-sized plots of land for planting. For crop i ∈ JnK, ai ≥ 0 is
the per-plot fixed cost of planting, and ξi ∼ U(0, 1) is the uncertain uniformly distributed per-plot
yield in crop units. In the first stage we do not yet know ξi, but we must choose the number of
plots to allocate to crop i, denoted by the variable xi ∈ Z. In the second stage, we harvest the
crops and decide how many units of each crop to buy and sell on the market, balancing inputs and
outputs. For each crop i, di ≥ 0 is the contractual demand that must be met, ci ≥ 0 is the selling
price per unit (excluding contractual demand), and bi ≥ 0 is the purchasing cost per unit. Since
the second stage decisions decompose by crop i ∈ JnK, we represent these variables as univariate
polynomials in ξi of maximum degree 2k. The purchasing quantity yi ∈ R1,2k[ξi] and the selling
quantity zi ∈ R1,2k[ξi] must be nonnegative for any realized yield ξi ∈ [0, 1]. We minimize the total
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expected cost, so the high-level stochastic mixed-integer polynomial model is:

minx,y,z a′x+
∑

i∈JnKEξi [biyi(ξi)− cizi(ξi)] : (5.18a)

e′x ≤ m, (5.18b)

x ≥ 0, (5.18c)

x ∈ Zn, (5.18d)

ξixi + yi(ξi)− zi(ξi)− di = 0 ∀i ∈ JnK, ξi ∈ [0, 1], (5.18e)

yi(ξi) ≥ 0 ∀i ∈ JnK, ξi ∈ [0, 1], (5.18f)

zi(ξi) ≥ 0 ∀i ∈ JnK, ξi ∈ [0, 1]. (5.18g)

Note that the expectations in the objective can be rewritten as integrals - for example, since
ξi ∼ U(0, 1), we have:

Eξi [yi(ξi)] =
∫ 1
0 yi(ξi)dξi. (5.19)

We formulate an exact mixed-integer conic representation of (5.18). We set up U = 1 + 2k

interpolant basis points ou ∈ [0, 1],∀u ∈ JUK and the collection of matrices P parametrizing KSOS(P ).
The new variables yi, zi ∈ RU ,∀i ∈ JnK represent the polynomials via the interpolant basis. Using the
integral representation of the expectation (5.19), we can use the quadrature weights w to formulate
the expectations in the objective as linear functions of yi, zi. The conic form model is:

minx,y,z a′x+
∑

i∈JnKw
′(biyi − cizi) : (5.20a)

oxi + yi − zi − die = 0 ∀i ∈ JnK, (5.20b)

m− e′x ∈ R≥, (5.20c)

x ∈ Rn≥, (5.20d)

yi ∈ KSOS(P ) ∀i ∈ JnK, (5.20e)

zi ∈ KSOS(P ) ∀i ∈ JnK, (5.20f)

x ∈ Zn. (5.20g)

The EF for the 2n KSOS(P ) constraints in Section 2.5.2 uses K⪰ cones and auxiliary variables.
We generate random instances of (5.20) with n = 3 crops, varying the degree 2k of the polynomials.

The instances are feasible since there is no capacity limit on the purchasing quantities. The instances
are bounded because the purchasing costs exceed the selling costs, i.e. 0 < ci < bi. Our results are
summarized in Table 5.3. The NF converges in only one or two iterations on all instances up to
half-degree k = 512 within the time limit, but the EF hits a time limit or encounters numerical
convergence difficulties on all instances. We verify feasibility of the solutions returned by solving a
small polynomial minimization problem for each SOS constraint.

We include the optimal objective values (obtained by nat) in the obj column. As expected, these
values decrease as the polynomial half-degree k increases, with rapidly diminishing returns. If we
had a problem with more crops, we could decrease k in order to balance the solve time.
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Table 5.3: Polynomial two-stage stochastic problem solver statistics.

nat ext

k obj st it time st it time

8 16.73477 co 2 0.1 er 2 0.7
16 16.70516 co 2 0.2 er 2 4.1
32 16.69616 co 2 0.5 er 1 67
64 16.69364 co 2 1.6 tl 0 868

128 16.69301 co 2 6.8 ∗ ∗ ∗
256 16.69284 co 1 33 ∗ ∗ ∗
512 16.69280 co 1 234 ∗ ∗ ∗

1024 ∗ tl 0 673 ∗ ∗ ∗

We note we could probably solve (5.20) faster by decomposing the continuous conic subproblems
by crop, i.e. solving n smaller subproblems instead of one at each iteration. This Benders-like
algorithm is not implemented in MOIPajarito currently. Our example code allows optionally adding
a linking constraint across the crops in the second stage, in which case we let the polynomial
variables be multivariate functions of (ξi)i∈JnK. This problem is not decomposable and is much
higher-dimensional. In future could also try non-uniform or non-independent distributions for the
crop yields, as sum-of-squares modeling is quite versatile.

5.3.3.4 Polynomial regression

Suppose we have m observations (Xi, Yi),∀i ∈ JmK, where Xi ∈ [0, 1]n and Yi ∈ [0, 1]. We assume
there are two populations and we do not know which observations belong to which population. Our
goal is to estimate a multivariate polynomial regression function for each population and assign the
observations to these populations. We let p1, p2 ∈ Rn,2k[x] be the regressor variables. Suppose that
p1 is greater than or equal to p2 on the domain of interest, [0, 1]n. We let b ∈ {0, 1}m be binary
variables representing the assignment of the observations to the populations, and we assume that the
each population contains at least 40% of the observations. We minimize the ℓ2 norm of the residuals
z ∈ Rm. The high-level disjunctive polynomial model is:

minp1,p2,z,b ∥z∥ : (5.21a)

p1(x) ≤ 1 ∀x ∈ [0, 1]n, (5.21b)

p1(x) ≥ p2(x) ∀x ∈ [0, 1]n, (5.21c)

p2(x) ≥ 0 ∀x ∈ [0, 1]n, (5.21d)

b ∈ {0, 1}m, (5.21e)

0.4m ≤ e′b ≤ 0.6m, (5.21f)

bi = 1 ⇒ zi = Yi − p1(Xi) ∀i ∈ JmK, (5.21g)

bi = 0 ⇒ zi = Yi − p2(Xi) ∀i ∈ JmK. (5.21h)
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Since the polynomials are multivariate, we formulate a mixed-integer sum-of-squares relaxation
of (5.21). As in Sections 2.3.6 and 2.3.7, we select U =

(
n+2k
n

)
interpolant points in [0, 1]n, compute

the collection of matrices P , and compute a matrix B ∈ Rm×U by evaluating the U Lagrange
polynomials (corresponding to the interpolant basis) at the observations Xi,∀i ∈ JmK. The new
variables p1, p2 ∈ RU ,∀i ∈ JnK represent the values of the polynomials at the interpolant basis points,
or equivalently the coefficients on the Lagrange basis polynomials. The linear function Bp1 ∈ Rm

of the polynomial variable p1 represents its values at Xi,∀i ∈ JmK (and similarly for p2). Note the
values of the residuals are bounded below by −1 and above by 1. For each i ∈ JmK, we use big-M
formulations for the implication constraints:

|zi − Yi +Bp1| ≤ 1− bi, (5.22a)

|zi − Yi +Bp2| ≤ bi. (5.22b)

We reformulate these big-M constraints using linear constraints and auxiliary variables r1, r2 ∈ Rm.
Rewriting the objective function using an epigraph variable γ and a Kℓ2 (second order) constraint,
the conic form model is:

minp1,p2,z,b,r1,r2,γ γ : (5.23a)

r1,i = zi − Yi +Bp1 ∀i ∈ JmK, (5.23b)

r2,i = zi − Yi +Bp2 ∀i ∈ JmK, (5.23c)

(γ, z) ∈ Kℓ2 , (5.23d)

r1 + (e− b) ∈ Rm≥ , (5.23e)

(e− b)− r1 ∈ Rm≥ , (5.23f)

r2 + b ∈ Rm≥ , (5.23g)

b− r2 ∈ Rm≥ , (5.23h)

e′b− 0.4m ∈ R≥, (5.23i)

0.6m− e′b ∈ R≥, (5.23j)

e− p1 ∈ KSOS(P ), (5.23k)

p1 − p2 ∈ KSOS(P ), (5.23l)

p2 ∈ KSOS(P ), (5.23m)

b ∈ {0, 1}m. (5.23n)

The EF for the three KSOS(P ) constraints in Section 2.5.2 uses K⪰ cones and auxiliary variables.
We generate random instances of (5.23), varying the number of observations m from 2U = 30

to 80. We use bivariate quartic polynomials (i.e. n = 2, 2k = 4, and U = 15), hence the sum-of-
squares relaxation (5.23) is exact (Blekherman, 2012). First we generate two random underlying
polynomials representing the two populations and satisfying the three sum-of-squares constraints in
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(5.23) on p1 and p2 (using Hypatia to solve small polynomial minimization problems). Then we use
these underlying polynomials to generate the m noisy observations, with approximately half of the
observations from each population, using a signal to noise ratio of 25. The instances are feasible and
bounded.

Our results are summarized in Table 5.4. Note that the Kℓ2 constraint is handled with OA in
MOIPajarito rather than passed to Gurobi. The NF converges with a modest number of iterations
on all instances up to m = 70 observations within the time limit. The EF is slower to solve for all
sizes and solves fewer large instances within the time limit. We verify SOS-feasibility of the solutions.
We note that, due to the large number of variables and linear inequalities in these formulations,
Hypatia would be able to solve the subproblems faster if many of these were able to be eliminated
using advanced preprocessing techniques that are not implemented.

Table 5.4: Polynomial regression solver statistics.

nat ext

m st it time st it time

30 co 9 6.0 co 9 16
35 co 6 8.3 co 8 33
40 co 7 25 co 8 54
45 co 7 22 co 9 74
50 co 10 47 co 9 107
55 co 17 259 tl 12 600
60 co 8 67 co 10 249
65 co 9 223 tl 9 600
70 co 11 288 tl 9 600
75 tl 8 600 tl 5 600
80 tl 4 600 tl 4 600

5.4 Infinity/spectral norm cones

In Sections 2.2.2 and 2.6 we consider a class of cones that can be characterized as epigraphs of vector
ℓ∞ or ℓ1 norms or matrix spectral or nuclear norms. For the real vector domain case, the polyhedral
cones Kℓ∞ and K∗

ℓ∞
have fairly compact (polynomial-sized) linear EFs, hence we do not need to

use polyhedral OA. For complex vector domains, these cones are nonpolyhedral but have compact
EFs using multiple three-dimensional Kℓ2 cones. In the case of symmetric/Hermitian or rectangular
matrix domains, we do not use EFs for OA.

We focus here on describing oracles for the rectangular real matrix domain case. Recall from
Section 2.2.2.2 that for d rows and s ≥ d columns, the spectral and nuclear norm cones are:

Kℓspec(d,s) := {(u,w) ∈ R≥ × Rds : u ≥ σ1(W )}, (5.24a)

K∗
ℓspec(d,s)

:=
{
(u,w) ∈ R≥ × Rds : u ≥

∑
i∈JdKσi(W )

}
, (5.24b)

where W := matd,s(w) ∈ Rd×s, σi(W ) ≥ 0 is the ith largest singular value of W . The complex
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matrix case is nearly identical, and we can easily specialize these oracles for the symmetric/Hermitian
cases (e.g by using eigendecompositions instead of singular value decompositions). The primal
and dual cones are implemented in MOIPajarito for all six domain types: real/complex vectors,
symmetric/Hermitian matrices, and real/complex rectangular matrices.

5.4.1 Initial cuts

For Kℓspec and K∗
ℓspec

, we add the initial cut u ≥ 0, which is valid for any norm-epigraph cone. We
can use some of the cheap primal or dual feasibility check conditions discussed in Section 2.6.2 to
derive more initial cuts. For example, we can use the scaled ℓ1 and ℓ∞ lower bounds on the spectral
norm along with EFs for Kℓ∞ and K∗

ℓ∞
to impose a polyhedral relaxation of a Kℓspec constraint. If

the OA solver supports MISOCP, we can use the scaled ℓ2 norm bounds on the spectral or nuclear
norm to add a Kℓ2 constraint that gives a tighter relaxation of the Kℓspec or K∗

ℓspec
constraint, though

this is not currently implemented.

5.4.2 Cut strengthening

For a spectral norm cone constraint (u,w) ∈ Kℓspec , suppose we have a dual point (p, q) ∈ K∗
ℓspec

.
Let Q = mat(q) ∈ Rd×s and similarly let W = mat(w) be the matrix of variables. Note that q′w =

⟨Q,W ⟩. Let Q = U Diag(σ)V ′ be the thin SVD of Q, where σ ∈ Rr≥ are the singular values (ordered
largest to smallest) and U ∈ Rd×d, V ∈ Rs×d are orthogonal matrices i.e. UU ′ = U ′U = V ′V = I(d).
The cut pu+ ⟨Q,W ⟩ ≥ 0 is valid, but it can be strengthened to:

e′σu+ ⟨Q,W ⟩ ≥ 0, (5.25)

since (e′σ, q) is on the boundary of K∗
ℓspec

. We can decompose this cut into multiple cuts to tighten
the polyhedral OA:

σiu+ ⟨σiUiV ′
i ,W ⟩ ≥ 0 ∀i ∈ JdK : σi > 0. (5.26)

These cuts are from extreme rays of K∗
ℓspec

(analogous to the extreme points of ℓ1 norm ball), and
they imply the strengthened dual cut (5.25) because:∑

i∈JdK:σi>0(σiu+ ⟨σiUiV ′
i ,W ⟩) = e′σu+ ⟨Q,W ⟩. (5.27)

Now suppose we have a nuclear norm cone constraint (u,w) ∈ K∗
ℓspec

and the dual point is
(p, q) ∈ Kℓspec . The cut pu+ ⟨Q,W ⟩ ≥ 0 is valid, but it can be strengthened to:

σ1u+ ⟨Q,W ⟩ ≥ 0, (5.28)

since (σ1, q) is on the boundary of Kℓspec . This cut is not extreme in general, since the extreme
rays of Kℓspec have equal σi = σj ,∀i, j ∈ JdK (analogous to the extreme points of the ℓ∞ norm ball).
Since an extreme ray decomposition may require up to 2d−1 extreme rays, we do not attempt this.
We could optionally add both the non-extreme cut and a single extreme cut σ1u+ σ1⟨Q,UV ′⟩ ≥ 0
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(obtained by letting σ = σ1e), but this is not currently implemented.

5.4.3 Separation cuts

Suppose we have a point (ū, w̄) ∈ Rq and let W̄ = mat(w̄) ∈ Rd×s. Similar to above, let W̄ =

U Diag(σ)V ′ be the thin SVD of W̄ . For a spectral norm cone constraint, the point is infeasible if
ū < σ1, in which case we add the separation cuts:

u− ⟨UiV ′
i ,W ⟩ ≥ 0 ∀i ∈ JdK : ū < σi. (5.29)

These extreme cuts are violated because ⟨UiV ′
i , W̄ ⟩ = σi.

For a nuclear norm cone constraint, the point is infeasible if ū < e′σ, in which case we add the
separation cut:

u− ⟨UV ′,W ⟩ ≥ 0. (5.30)

This extreme cut is violated because ⟨UV ′, W̄ ⟩ = e′σ.

5.4.4 Examples for spectral and nuclear norm cones

5.4.4.1 Matrix completion

We find nonnegative integer values for the missing entries of a partially-completed symmetric
matrix to minimize the nuclear norm (maximum absolute value of the eigenvalues) of the completed
symmetric matrix, subject to some linear constraints. Let X ∈ Sd be a sparse symmetric matrix
of the missing entry variables, with sparsity pattern S. Let Y ∈ Sd be a sparse symmetric matrix
with the inverse sparsity pattern of S containing the known entries, so that X + Y is the completed
dense matrix. The high-level model is:

minX ∥X + Y ∥nuc : (5.31a)

0 ≤ Xi,j ≤ 9 ∀(i, j) ∈ S, (5.31b)∑
(i,j)∈SXi,j ≥ d, (5.31c)

Xi,j ∈ Z ∀(i, j) ∈ S. (5.31d)

The equivalent conic formulation simply uses nonnegative cones for the linear constraints and
introduces an epigraph variable for the objective along with a dual symmetric spectral norm cone
(K∗

ℓsspec
) constraint. Note we rescale X + Y by 1/d to improve the scaling of the objective. The

standard conic EF for K∗
ℓsspec

is described in Section 2.2.2; it uses two K⪰ cones and introduces a
large number of auxiliary variables.

We generate random instances of the conic formulation for (5.31) for various side dimensions d.
First, we generate a random PSD matrix with entries between 0 and 9, then we choose a fraction
of approximately (n− 1)/n of these entries to be the known values. All instances are feasible and
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bounded, and our results are summarized in Table 5.5. The NF converges on all instances up to size
d = 180 within the time limit, but the EF hits a time limit or encounters numerical convergence
difficulties on all instances but one. Note that larger instances solve in one iteration.

Table 5.5: Matrix completion solver statistics.

nat ext

d st it time st it time

20 co 59 4.1 er 4 0.7
40 co 110 25 er 3 8.3
60 co 38 16 er 2 29
80 co 14 25 tl 3 600

100 co 1 38 co 1 438
120 co 1 72 tl 0 607
140 co 1 152 tl 0 1095
160 co 1 282 tl 0 2448
180 co 1 475 tl 0 4867
200 tl 0 610 ∗ ∗ ∗
220 tl 0 618 ∗ ∗ ∗

5.4.4.2 Matrix decomposition

We aim to decompose a rectangular matrix C ∈ Rm×n into a sum C = A+B of a binary matrix
A and matrix B with minimal spectral norm. The number of nonzeros in A must equal k. The
high-level model is:

minA ∥C −A∥spec : (5.32a)∑
i∈JmK,j∈JnKAi,j = k, (5.32b)

Ai,j ∈ {0, 1} ∀i ∈ JmK, j ∈ JnK. (5.32c)

The equivalent conic formulation simply introduces an epigraph variable for the objective along
with a Kℓspec constraint. The standard conic EF for this constraint is described in Section 2.2.2; it
involves a large K⪰ cone of side dimension m+ n.

We generate random instances of the conic formulation for (5.32) for row dimension m = 15,
k ≈ m, and various column dimensions n. The parameter matrix C is a sum of a random sparse
binary matrix and a low-rank random matrix. All instances are feasible and bounded, and our results
are summarized in Table 5.6. The NF and the EF converge on all instances up to size n = 600

and n = 200 respectively, beyond which they hit time limits. The NF is faster and usually takes a
similar number of iterations as the EF, so there is no evidence that the EF tightens the polyhedral
relaxations for this example.
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Table 5.6: Matrix decomposition solver statistics.

nat ext

n st it time st it time

50 co 53 23 co 71 37
100 co 14 17 co 14 32
150 co 55 49 co 55 140
200 co 111 164 co 109 386
250 co 59 70 tl 38 600
300 co 82 232 tl 0 602
350 co 138 440 tl 0 612
400 co 1 370 tl 0 612
450 co 8 219 tl 0 889
500 co 16 290 tl 0 1326
550 co 4 370 tl 0 1915
600 co 5 471 ∗ ∗ ∗
650 tl 0 610 ∗ ∗ ∗
700 tl 0 601 ∗ ∗ ∗

5.4.4.3 Matrix regression

Given a design matrix X ∈ Rn×p and a response matrix Y ∈ Rn×m, we estimate a coefficient matrix
A ∈ Rp×m, where n is the number of samples, p is the number of predictors, and m is the number of
responses, and n ≥ p ≥ m. We assume all entries of A are in [−1, 1]. We use the ℓ2 norm loss, with
nuclear norm regularization (with parameter λ > 0) to encourage a low-rank solution. Furthermore,
we restrict the number of nonzero rows of A to be at most k ≤ p, i.e. we enforce sparsity with respect
to the predictors. In the context of multi-response linear regression, group-LASSO-row (or GLR)
regularization is sometimes used to encourage row sparsity (L. Chen and Huang, 2012), but our
approach uses discrete constraints rather than convex regularization. The high-level model is:

minA,z ∥vec(Y −XA)∥+ λ∥A∥nuc : (5.33a)

z ∈ {0, 1}p, (5.33b)

e′z ≤ k, (5.33c)

−zi ≤ Ai,j ≤ zi ∀i ∈ JpK, j ∈ JmK. (5.33d)

The equivalent conic formulation introduces two epigraph variables for the objective terms along
with a Kℓ2 constraint for the loss and a K∗

ℓspec
constraint for the regularization. Note that for n > p,

we use a QR factorization of X to reduce the dimension of the Kℓ2 constraint from 1+nm to 1+ pm;
see Section 2.3.7 for details. The standard conic EF for K∗

ℓspec
is described in Section 2.2.2; it involves

a large K⪰ cone of side dimension p+m and sd(p) + sd(m) auxiliary variables.
We generate random instances of the conic formulation for (5.33) for various values of p, with

k ≈ 2p/3, n = 2p, and m = 5. All instances are feasible and bounded, and our results are summarized
in Table 5.7. The NF converges on all but one instance up to size p = 100, but the EF only converges
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on the smallest instance and hits the time limit or encounters numerical convergence issues otherwise.
The NF only takes at most 5 iterations to converge.

Table 5.7: Matrix regression solver statistics.

nat ext

p st it time st it time

10 co 2 0.1 co 7 1.5
20 co 2 0.5 er 3 2.3
30 co 2 0.9 tl 2 600
40 co 4 14 er 2 38
50 co 4 37 er 1 74
60 co 5 363 tl 2 600
70 co 2 8.9 tl 1 600
80 co 2 35 tl 1 600
90 tl 4 600 tl 0 631

100 co 2 68 tl 0 632
110 tl 2 600 tl 0 637

5.5 Spectral function cones

These cones are discussed in Section 2.2.3 and Chapter 3. For the vector domains, MOIPajarito
optionally uses internally managed EFs to accelerate OA, as discussed in Section 5.2.4. We show
how to extend K∗ cuts and solutions from the NF space into the EF space. For the matrix domains,
we do not use internally managed EFs, as these are large and complex.

5.5.1 Geometric mean cone

For convenience, let geo : Rd≥ → R≥ be the geometric mean function geo(w) =
∏
i∈JdKw

1/d
i . Note in

Chapter 3, we refer to this as the root-determinant function in the more general context of Jordan
algebras. The geometric mean cone is the hypograph of the geometric mean (see Section 2.2.3.1):

Kgeo :=
{
(u,w) ∈ R× Rd≥ : u ≤ geo(w)

}
, (5.34a)

K∗
geo :=

{
(u,w) ∈ R≤ × Rd≥ : u ≥ −d geo(w)

}
. (5.34b)

Since K∗
geo does not provide additional modeling capability over Kgeo, we only support Kgeo in

MOIPajarito.
Suppose the constraint is (u,w) ∈ Kgeo. We note that the OA techniques below can be easily

adapted for the more general hypograph of power mean cone (see Section 1.8), which is implemented
in Hypatia but not MOIPajarito currently. Since using the EF is optional in MOIPajarito, first we
show the cut techniques we use without the EF, then we extend these techniques for the EF.

For initial cuts, we add the d variable bounds w ≥ 0. By plugging w = e into the nonlinear
inequality in the K∗

geo definition, we see that (−d, e) is a point on the boundary of the dual cone,
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which defines a simple initial cut −du+ e′w ≥ 0. Indeed, given any point (ū, w̄) ∈ R1+d with w̄ > 0,
we can ignore ū and obtain an extreme cut:

− d geo(w̄)u+ w̄′w ≥ 0. (5.35)

To separate a point (ū, w̄) ̸∈ Kgeo that satisfies w̄ > 0, we use the gradient cut:

− u+ d−1 geo(w̄)
∑

i∈JdKwi/w̄i ≥ 0. (5.36)

If we assume that w̄ satisfies the initial cuts w ≥ 0 but not strictly, i.e. some elements of w̄ are zero,
then we cannot use a simple gradient cut because the geometric mean function is not smooth at w̄.
In this case, a simple approach is to set any w̄i = 0 to w̄i = ϵ > 0 for some small positive ϵ such that
the gradient cut (5.36) separates w̄. However, such cuts can have bad conditioning and may affect
the numerical performance of the OA solver. It is possible to derive better separation cuts in this
case (similar to our approach in Section 4.6.1 for the exponential cone in Pajarito), but we leave this
for future work.

Now suppose we want to use an EF in the OA model (to tighten polyhedral relaxations), but we
still want to use the NF in the conic subproblems (to avoid slowing down the conic solver). In terms
of 1 + d auxiliary variables θ ∈ R and λ ∈ Rd, the EF for (u,w) ∈ Kgeo is:

θ ≥ u, (5.37a)

e′λ ≥ 0, (5.37b)

(λi, θ, wi) ∈ Klog ∀i ∈ JdK. (5.37c)

Note that this EF is slightly different (in terms of signs) to the EF (2.17) implemented in MathOptIn-
terface bridges. Recall from the definition of the three-dimensional logarithm cone (i.e. the standard
exponential cone) in Section 2.2.3.2 that (λi, θ, wi) ∈ Klog is equivalent (modulo closures) to the
variable bounds θ ≥ 0 and wi ≥ 0 and the convex constraint λi ≤ θ log(wi/θ). The three-dimensional
dual logarithm cone is:

K∗
log = cl{(p, q, r) : p ≤ 0, r ≥ 0, q ≥ p(log(−r/p) + 1)}, (5.38)

and any point (p, p(log(−r/p) + 1), r) with p < 0 and r > 0 is an extreme ray of K∗
log.

For each Klog cone in the EF, we add the initial cuts θ ≥ 0 and wi ≥ 0. Since the point (−1,−1, 1)
is an extreme ray of K∗

log, we can add the d initial cuts:

− λi − θ + wi ≥ 0 ∀i ∈ JdK. (5.39)

Together with the EF linear constraints in (5.37), these cuts imply our NF space initial cut
−du+ e′w ≥ 0 because:

0 ≤
∑

i∈JdK(−λi − θ + wi) = −e′λ− dθ + e′w ≤ −du+ e′w. (5.40)
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For an NF space dual point (ū, w̄) ∈ K∗
geo with w̄ > 0, we can strengthen and extend the

corresponding NF cut to the d extreme EF cuts:

pλi + p(log(−w̄i/p) + 1)θ + w̄iwi ≥ 0 ∀i ∈ JdK, (5.41)

where we let p = − geo(w̄) < 0. Note that ū is ignored, and we have:∑
i∈JdK log(−w̄i/p) = log

(∏
i∈JdK(w̄i/ geo(w̄))

)
= log(1) = 0. (5.42)

Therefore, together with the EF linear constraints in (5.37), these cuts imply:

0 ≤
∑

i∈JdK(pλi + p(log(−w̄i/p) + 1)θ + w̄iwi) = p(e′λ+ dθ) + w̄′w ≤ dpu+ w̄′w. (5.43)

Hence the disaggregated extreme cuts (5.41) are at least as strong as the NF space extreme cut
(5.35).

Finally, suppose we have an NF space primal feasible solution (ū, w̄) ∈ Kgeo obtained by the
subproblem solver, and we want to find values for the auxiliary variables θ and λ satisfying the EF
space constraints (5.37). This allows MOIPajarito to give a feasible solution to the OA solver. We
take θ = geo(w̄) ≥ 0. If θ = 0, we let λi = 0, otherwise we let λi = θ log(w̄i/θ).

Figures 5.1 and 5.2 illustrate the impact of the geometric mean cone EF on the strength of
polyhedral relaxations. In Figure 5.1, we consider a simple three-dimensional convex constraint
geo(w) ≥ 1 for w ∈ [0, 3]3. Note this is equivalent to (1, w) ∈ Kgeo, i.e. u is fixed to one, and in
the EF we let θ = u = 1. Consider seven points for w̄ ∈ R3: e and the three permutations of each
of (3−1, 1, 1) and (3−3, 1, 1). At each point, we add the corresponding cuts (5.35) to the NF or
(5.41) to the EF. In Figure 5.1 (right) we plot the EF cuts (5.41) for each i ∈ J3K. We project the
three-dimensional NF and the 6-dimensional EF onto w1 and w2. From Figure 5.1 (left), we see that
the projected OA polyhedron is larger (and has fewer extreme points) for the NF than for the EF.
We performed this analysis by setting up JuMP models and using Polyhedra.jl (Benoît Legat et al.,
2021) (with CDDLib) to find the extreme points of the projected polyhedra.

Figure 5.2 shows the iteration counts and solve times for the separation-only algorithm (using
only the initial fixed cuts and the separation cuts, and not solving any conic subproblems) for the
continuous relaxation of the simple knapsack example in Section 5.5.4.1 with the negative geometric
mean objective. We relax the integrality constraints because these cause a significant slowdown and
make the plots very nonsmooth, which obscures the trends. The cone dimension and number of
primal variables is 1 + n. We only set up instances up to size n = 200 with EF on and n = 70 with
EF off No instances fail to converge. Overall EF on requires much fewer iterations and much fewer
cuts (which are only three-dimensional cuts instead n-dimensional) than EF off, and this translates
to much faster solve times.
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Figure 5.1: For a three-dimensional geometric mean ball constraint geo(w) ≥ 1 with w ∈ [0, 3]3,
projections of the NF and EF onto the first two variables w1, w2, given a fixed set of seven NF space
cuts.
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Figure 5.2: Results for the separation-only algorithm on the continuous relaxation of the knapsack
example in Section 5.5.4.1 with the negative geometric mean objective.
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5.5.2 Vector separable spectral function cones

Suppose φ : Rd → R is a convex separable spectral function defined on the positive reals, i.e.
φ(w) =

∑
i∈JdKφ(wi) for w > 0. Let φ∗ be the convex conjugate function (see Section 3.4.3) of φ,

which is also a convex separable spectral function (possibly infinite-valued). We define the vector
separable spectral cone and its dual cone as:

Ksep := cl{(u, v, w) ∈ R2+d : v > 0, w ≥ 0, u ≥ vφ(w/v)}, (5.44a)

K∗
sep := cl{(u, v, w) ∈ R2+d : u > 0, v ≥ uφ∗(w/u)}. (5.44b)

Examples of suitable φ functions belonging to the matrix monotone derivative (MMD) class
are discussed in Section 3.6 and Table 3.1 (note Q = Rd≥ is the vector domain), including NegLog,
NegEntropy, NegSqrt, NegPower, and Power. Note that for these MMD functions, the conjugates φ∗

may or may not implicitly restrict w ≥ 0 in K∗
sep. We predefine this list of MMD functions in both

Hypatia and MOIPajarito. Like Hypatia, MOIPajarito allows defining new φ functions through a
small set of oracles, including those already needed by Hypatia. The additional φ oracles needed are
(1) gradients of the conjugate function φ∗, and (2) a list of points from which we derive initial fixed
cuts.

MOIPajarito supports both Ksep and K∗
sep. For simplicity, here we only discuss oracles for the

primal cone Ksep, as these are simple to adapt for K∗
sep by e.g. swapping the epigraph and perspective

variables. Suppose the constraint is (u, v, w) ∈ Ksep. As in the geometric mean cone case, using the
EF in MOIPajarito is optional, so first we show the cut techniques without the EF.

For initial cuts, we add the 1 + d variable bounds v ≥ 0 and w ≥ 0. Furthermore, by letting
w = re for some scalar r (such that φ∗(r) < ∞), we see from (5.44b) that (1, dφ∗(r), re) is an
extreme ray of K∗

sep that defines a simple initial cut:

u+ dφ∗(r)v + re′w ≥ 0. (5.45)

Indeed, given a point (ū, v̄, w̄) ∈ R1+d with ū > 0, φ∗(w̄) < ∞, we can ignore v̄ and obtain an
extreme cut:

ūu+ ūφ∗(w̄/ū)v + w̄′w ≥ 0. (5.46)

To separate a point (ū, v̄, w̄) ̸∈ Ksep that satisfies v̄ > 0, w̄ > 0, we add the gradient cut:

u+ φ∗(r)v + r′w ≥ 0, (5.47)

where ri = −∇φ(w̄i/v̄),∀i ∈ JdK and ∇φ is the derivative of univariate φ. Note this separation cut
ignores ū. If we do not have v̄ > 0 and w̄ > 0, then we may be unable to compute the gradient.
In this case it may be possible to derive a violated gradient cut from a nearby point; we leave the
derivation of better separation cuts for future work.

Now suppose we use an EF in the OA model. In terms of auxiliary variables λ ∈ Rd, the EF for
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(u, v, w) ∈ Ksep is written in terms of a linear inequality and d Ksep cones of dimension three:

u ≥ e′λ, (5.48a)

(λi, v, wi) ∈ Ksep ∀i ∈ JdK. (5.48b)

For initial cuts we again add v ≥ 0 and wi ≥ 0. For each r value from (5.45), we add d extreme
initial cuts in EF space:

λi + φ∗(r)v + rwi ≥ 0 ∀i ∈ JdK. (5.49)

These cuts imply the corresponding NF space initial cuts, so our initial OA is at least as strong.
Indeed, for any NF space dual point (ū, v̄, w̄) ∈ K∗

sep with ū > 0 and φ∗(w̄) < ∞, we can
strengthen and extend the NF cut to d extreme EF cuts:

ūλi + ūφ∗(w̄i/ū)v + w̄iwi ≥ 0 ∀i ∈ JdK. (5.50)

Note v̄ is ignored. These cuts, together with (5.48a), imply the corresponding NF cut, since:

0 ≤
∑

i∈JdK(ūλi + ūφ∗(w̄i/ū)v + w̄iwi) = ūe′λ+ ūφ∗(w̄/ū)v + w̄′w ≤ ūu+ v̄v + w̄′w. (5.51)

Finally, suppose we have an NF space primal feasible solution (ū, v̄, w̄) ∈ Ksep. To extend this
to a feasible solution for the auxiliary variables λ, we simply let λi = v̄φ(w̄i/v̄) if v̄ > 0, w̄i > 0,
otherwise we let λi = 0.

We illustrate the impact of the separable spectral vector cone EF on the strength of polyhedral
relaxations. Similar to Figure 5.1, in Figure 5.3 we consider a simple three-dimensional convex con-
straint

∑
i∈J3Kw

2 ≤ 1 for w ∈ [0, 1]3. This convex constraint has the form (1, 1, w) ∈ Ksep(Power(2))

with d = 3, and is equivalent to ∥w∥ ≤ 1 (note it can also be expressed with Kℓ2 and linear
constraints). Consider seven points for w̄ ∈ R3: e and the six permutations of (1, 2, 3). At each
point, we add the corresponding cuts (5.46) to the NF or (5.50) to the EF. In Figure 5.3 (right) we
plot the EF cuts for each i ∈ J3K. We project the three-dimensional NF and the 6-dimensional EF
onto w1 and w2. From Figure 5.3 (left), we see that the projected OA polyhedron is larger (and has
fewer extreme points) for the NF than for the EF.

Similar to Figure 5.2, in Figure 5.4 we plot the iteration counts and solve times for the separation-
only algorithm for the continuous relaxation of the knapsack example in Section 5.5.4.1 with the
sum-negative-logarithm (NegLog) objective or the sum-inverse (NegSqrt conjugate) objective. No
instances fail to converge, and EF on requires much fewer iterations and cuts than EF off, translating
into much faster solve times.

5.5.3 Matrix spectral function cones

The root-determinant cone Krtdet defined in Section 2.2.3.1 and discussed in Section 3.7 is an analogy
to the geometric mean cone in Section 5.5.1 for real symmetric or complex Hermitian domains.

194



Figure 5.3: For a three-dimensional Euclidean ball constraint ∥w∥ ≤ 1 with w ∈ [0, 1]3, projections
of the NF and EF onto the first two variables w1, w2, given a fixed set of seven NF space cuts.
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Similarly, the real symmetric or complex Hermitian separable spectral function cones (and their dual
cones) defined in Section 2.2.3.3 and discussed in Section 3.6 are analogies of the vector separable
spectral cone in Section 5.5.2.

The K∗ oracles we use for these matrix domain spectral function cones are in direct analogy
to the NF oracles we derive in Sections 5.5.1 and 5.5.2 for the vector domain cases, so we do not
describe the details here. Note we adapt techniques for the PSD cone from Section 5.3 to add initial
cuts and to decompose certain separation cuts and subproblem cuts. For these matrix domain cones,
we do not have simple EFs in terms of only three-dimensional cones, so we do not use internally
managed EFs in MOIPajarito. However, MOIPajarito enables us to investigate whether the EFs we
describe in Section 2.2.3, despite their size and complexity, could be helpful in accelerating OA for
certain problems.

5.5.4 Examples for spectral function cones

5.5.4.1 Knapsack problem with convex objective

We formulate a simple integer knapsack problem with a convex objective. For each item i ∈ JnK,
the per-unit weight and value are bi > 0 and ci > 0, and the variable xi ≥ 1 represents the number
of units we select. We have a weight budget of B > 0 and we minimize a convex spectral function
f : Rn → R of the values cixi, ∀i ∈ JnK of the units selected. The high-level model is:

minx f
(
(cixi)i∈JnK

)
: (5.52a)
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Figure 5.4: Results for the separation-only algorithm on the continuous relaxation of the knapsack
example in Section 5.5.4.1 with two different objective functions.
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x ≥ e, (5.52b)

b′x ≤ B, (5.52c)

x ∈ Zn. (5.52d)

The equivalent MI-conic formulation introduces an epigraph variable and a vector spectral function
cone constraint (over Kgeo or Ksep) to represent the objective. The standard conic EFs for these
types of constraints are discussed in Section 2.2.3.

We generate random instances of the conic formulation for (5.52) with the negative geometric
mean objective for various numbers of items n. All instances are feasible and bounded, and our results
are summarized in Table 5.8. nat is the standard algorithm that uses the NF for the continuous
conic models and the EF for the OA model, noext uses the NF for both the conic and the OA models,
and ext uses the EF for both the conic and the OA models. nat and ext solve similar numbers of
instances in similar numbers of iterations, though nat solves one size larger and is typically faster,
probably because Hypatia solves the NFs faster. noext takes many more iterations than nat or ext
and only solves the smallest instances before hitting time limits. This suggests that the geometric
mean cone EF generates tighter polyhedral relaxations.

Table 5.8: Knapsack problem with convex objective solver statistics.

nat noext ext

n st it time st it time st it time

3 co 3 0.0 co 5 0.0 co 3 0.0
6 co 8 0.1 co 34 0.7 co 8 0.1
9 co 6 17 co 71 165 co 6 21

12 co 9 22 tl 30 600 co 7 34
15 co 6 4.3 tl 253 600 co 8 5.9
20 co 7 13 tl 76 600 co 8 34
25 co 8 15 tl 109 600 co 8 17
30 co 9 21 tl 175 600 co 8 19
35 co 7 9.7 tl 543 600 co 7 14
40 co 11 3.1 ∗ ∗ ∗ co 12 6.9
50 co 8 9.5 ∗ ∗ ∗ co 8 19
60 co 8 14 ∗ ∗ ∗ co 11 15
70 co 7 13 ∗ ∗ ∗ co 10 20
80 co 8 9.5 ∗ ∗ ∗ co 8 12
90 co 12 57 ∗ ∗ ∗ co 15 63

100 co 10 409 ∗ ∗ ∗ tl 7 600
110 tl 6 600 ∗ ∗ ∗ tl 6 600
120 tl 5 600 ∗ ∗ ∗ tl 5 600

5.5.4.2 Sparse regression with prior constraints

Given observations (Yi, Xi),∀i ∈ JnK with Yi ∈ R and Xi ∈ Rm, we formulate a linear regression
problem with ℓ2 norm loss and ℓ0 norm regularization (with parameter λ > 0) to encourage sparsity.
We are given some prior information expressed as L separable spectral function constraints on the
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nonnegative parameter variable β ∈ Rm≥ . The high-level model is:

minβ ∥Y −Xβ∥+ λ∥β∥0 : (5.53a)

β ≥ 0, (5.53b)

fl(e+ β) ≤ al ∀l ∈ JLK. (5.53c)

We let L = 2 and suppose f1 is the NegEntropy function and f2 is the NegSqrt conjugate function
(sum-inverse). We use a big-M formulation for the ℓ0 norm, assuming that β̂ upper-bounds β. The
conic form model is:

minβ,u,z u+ λe′z : (5.54a)

(u, Y −Xβ) ∈ Kℓ2 , (5.54b)

β ∈ Rm≥ , (5.54c)

β̂z − β ∈ Rm≥ , (5.54d)

(a1, 1, e+ β) ∈ Ksep(NegEntropy), (5.54e)

(1, a2, e+ β) ∈ K∗
sep(NegSqrt), (5.54f)

z ∈ {0, 1}m. (5.54g)

The standard conic EFs for Ksep and K∗
sep are discussed in Section 2.2.3.3; for the NegEntropy, the

EF uses exponential cones, and for the NegSqrt conjugate, the EF uses second order cones.
We generate random instances of (5.54), varying the number of observations n and letting

the parameter dimension be m = n. All instances are feasible and bounded, and our results are
summarized in Table 5.9. nat is the standard algorithm and noext uses the NF for both the conic
and the OA models (for Kℓ2 , Ksep, and K∗

sep). Whereas nat solves instances reliably in fewer than ten
iterations, noext takes many more iterations and fails to converge on all but the smallest instance.

Table 5.9: Sparse regression with prior constraints solver statistics.

nat noext

d st it time st it time

10 co 4 0.1 co 19 0.3
20 co 5 0.6 er 57 4.5
30 co 5 0.7 er 62 34
40 co 8 3.3 er 109 319
50 co 7 6.5 tl 7 600
60 co 9 24 tl 7 600
70 co 9 27 ∗ ∗ ∗
80 co 9 38 ∗ ∗ ∗
90 tl 3 600 ∗ ∗ ∗

100 tl 1 600 ∗ ∗ ∗
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5.5.4.3 Experiment design

We formulate a discrete experiment design problem similar to Boyd and Vandenberghe (2004, Section
7.5). The variable x ∈ Rk is the integer number of trials to run for each of k different experiments
that are useful for estimating a vector in Rd. The experiments are described by the columns of
V ∈ Rd×k. A total of k experiments are to be performed, and each experiment can be performed at
most twice. We minimize a convex spectral function f of the information matrix. The high-level
model is:

minx f(V Diag(x)V ′) : (5.55a)

0 ≤ x ≤ 2e, (5.55b)

e′x = k, (5.55c)

x ∈ Zk. (5.55d)

If f is the negative root-determinant function, the equivalent conic form model for (5.55) is:

minx,z z : (5.56a)

e′x = k, (5.56b)

x ∈ Rk≥, (5.56c)

2e− x ∈ Rk≥, (5.56d)

(−z, vec(V Diag(x)V ′)) ∈ Krtdet, (5.56e)

x ∈ Zk, (5.56f)

where vec is the svec operator. The hypograph of root-determinant cone Krtdet and its standard
conic EF are described in Section 2.2.3.1. Alternatively, if f is a matrix separable spectral function
(e.g. NegEntropy, the negative entropy of the eigenvalues), we replace (5.56e) with:

(z, 1, vec(V Diag(x)V ′)) ∈ Ksep. (5.57)

We discuss matrix separable spectral function cones and standard conic EFs in Section 2.2.3.3.
We generate random instances of the root-determinant and NegEntropy variants of (5.56) for

various dimensions d, with k = 2d experiments. All instances are feasible and bounded, and our
results are summarized in Tables 5.10 and 5.11. In both cases, nat is usually faster and solves larger
instances within the time limit, and ext encounters numerical convergence issues on larger instances.
However, on the instances that both algorithms converge on, ext usually takes fewer iterations. This
suggests that the EFs for these cones are expensive but may yield tighter polyhedral relaxations
(albeit with numerical issues), so these EFs are worth investigating further.
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Table 5.10: Experiment design solver statistics for the root-determinant objective.

nat ext

d st it time st it time

3 co 0 0.0 co 1 0.0
5 co 28 2.0 co 13 0.4
7 co 362 29 er 1 0.0
9 co 695 134 er 1 0.1

11 co 513 88 er 1 0.1
13 tl 1201 600 er 3 0.3
15 tl 3702 600 er 3 0.3

Table 5.11: Experiment design solver statistics for the negative entropy objective.

nat ext

d st it time st it time

3 co 8 0.1 co 4 0.1
5 co 10 0.2 co 5 0.7
7 co 61 2.7 co 15 9.2
9 co 108 5.6 co 18 45

11 co 369 109 er 1 2.2
13 co 757 328 er 1 5.9
15 tl 703 600 er 1 14
17 tl 1699 600 er 2 57

5.5.4.4 Inverse covariance estimation

Given an empirical covariance matrix Σ ∈ Sd⪰, we estimate an inverse covariance matrix; see Hsieh
et al. (2012) and Bertsimas, Lamperski, and Pauphilet (2020) for related approaches. We use squared
Frobenius norm regularization (with parameter λ > 0), and we constrain the number of rows of
off-diagonal nonzeros to be at most k, since some predictors are assumed to be unrelated to others.
The high-level model over the symmetric matrix variable P is:

minP,y ⟨Σ, P ⟩ − logdet(P ) + λ∥P∥2 : (5.58a)

P ∈ Sd⪰, (5.58b)

y ∈ {0, 1}d, (5.58c)

e′y = k, (5.58d)

yi = 0 ⇒ Pi,j = 0 ∀i, j ∈ JdK : i ̸= j. (5.58e)

To construct an efficient conic formulation for (5.58), we formulate the implication constraints
(5.58e) and the squared Frobenius norm terms jointly using Ksqr cones. We introduce auxiliary
variables u, z0 ∈ R and z ∈ Rd. The variable p ∈ Rsd(d) is the svec transformation of the symmetric
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matrix variable P in (5.58). Letting P = mat(p) for convenience below, the conic form model is:

minp,y,u,z0,z ⟨Σ, P ⟩+ u+ λ(z0 + e′z) : (5.59a)

e′y = k, (5.59b)

(u, 1, p) ∈ Ksep(NegLog), (5.59c)

(z0/2, 1, diag(P )) ∈ Ksqr, (5.59d)(
zi/2, yi, (Pi,j)j∈JdK:j ̸=i

)
∈ Ksqr ∀i ∈ JdK, (5.59e)

y ∈ {0, 1}d. (5.59f)

For the Ksep(NegLog) constraint, we use the standard conic EF in Section 2.2.3.2 for the log-
determinant cone.

We generate random instances of (5.59) for various side dimensions d, with k = d− ⌊
√
d⌋. All

instances are feasible and bounded, and our results are summarized in Table 5.12. nat converges on
all instances up to size d = 14 before hitting a time limit, but ext encounters numerical convergence
issues on all sizes except d = 9. Note Ksqr is a standard cone so nat and ext only differ in their
treatment of Ksep(NegLog).

Table 5.12: Inverse covariance estimation solver statistics.

nat ext

d st it time st it time

5 co 6 0.2 er 2 0.0
6 co 14 0.7 er 2 0.1
7 co 13 1.4 er 2 0.1
8 co 9 1.0 co 9 3.1
9 co 7 0.9 er 2 0.2

10 co 52 13 er 2 0.4
11 co 103 55 er 2 0.6
12 co 51 20 er 2 0.3
13 co 132 162 er 1 0.5
14 co 118 188 er 2 0.5
15 tl 173 600 er 2 1.2
16 tl 132 600 er 2 10

5.6 Advanced mixed-integer conic formulations

5.6.1 Tight conic formulations for disjunctions of convex constraints

Suppose we have a finite collection of convex sets (Ci)i∈JnK. For simplicity, assume each Ci is bounded.
The union ∪i∈JnKCi of these sets is nonconvex in general, and we denote its convex hull as convi∈JnK Ci.
Suppose we want an MI-convex formulation of the nonconvex constraint y ∈ ∪i∈JnKCi. Furthermore,
we want its continuous relaxation to enforce y ∈ convi∈JnK Ci.
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For i ∈ JnK, let Ki ⊂ R1+d be the convex cone generated by Ci ⊂ Rd:

Ki := cone{(1, y) : y ∈ Ci} = {(θ, θy) : θ ∈ R≥, y ∈ Ci}, (5.60)

where cone is the conic hull operator. The standard copies-of-variables formulation for y ∈ ∪i∈JnKCi
uses, for each i ∈ JnK, an auxiliary binary variable xi and a ‘copy’ variable zi ∈ Rd:∑

i∈JnKzi = y, (5.61a)

e′x = 1, (5.61b)

(xi, zi) ∈ Ki ∀i ∈ JnK, (5.61c)

x ∈ {0, 1}n. (5.61d)

Formulation (5.61) is discussed in Vielma (2018) and appears in, for example, Ben-Tal and Nemirovski
(2001). It is a unary formulation, as the number of binary variables is linear in n. Any feasible
solution has an index i ∈ JnK for which xi = 1 and zi = y ∈ Ci, and xj = 0 and zj = 0 for all j ̸= i. It
is a tight formulation since the continuous relaxation has integral extreme points, and the projection
onto y yields the convex hull formulation y ∈ convi∈JnK Ci. This tightness comes at the cost of many
auxiliary variables.

5.6.2 Piecewise linear relaxations of nonconvex equality constraints

Suppose f : R→ R is a convex univariate function. Suppose we have a list of L increasing points
on the real line, (ωl)l∈JLK, and we are only concerned with f on the domain [ω1, ωL]. We define the
2-dimensional graph of a piecewise linear (PWL) approximation of f as follows:

gr pwl f := ∪l∈JL−1K conv{(ωl, f(ωl)), (ωl+1, f(ωl+1))}. (5.62)

This set is a finite union of bounded polyhedra, so it is MILP-representable.
Consider the nonconvex nonlinear equality constraint u = f(w), or equivalently (u,w) ∈ gr f , for

w ∈ [ω1, ωL]. See Figure 5.5 for an illustration. Since gr f ⊂ epi f ∩ hypo pwl f on the domain of
interest, we can relax the nonconvex constraint to the convex constraint u ≥ f(w) and the PWL
hypograph constraint u ≤ pwl f(w), which sandwich the graph. Since the hypograph set hypo pwl f

is a finite union of bounded polyhedra with equal recession cones (the direction (−1, 0)), it is
MILP-representable, like gr pwl f . Thus we can write an MI-convex formulation for this sandwiching
relaxation.

For variables σ ∈ RL, a type-2 special ordered set (SOS2) constraint σ ∈ SOS2 enforces that
all but two adjacent variables σl, σl+1 are zero. We write an SOS2-linear formulation for the PWL
hypograph constraint (u,w) ∈ hypo pwl f for w ∈ [ω1, ωL]:∑

l∈JLKσlf(ωl) ≥ u, (5.63a)

σ′ω = w, (5.63b)
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Figure 5.5: A relaxation of the nonconvex set gr f for the convex function f(w) = w2.
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σ ∈ SOS2 . (5.63e)

Before turning our attention to mixed-integer formulations for SOS2 constraints in Section 5.6.4,
we introduce a useful generalization of PWL constraints: homogenized PWL constraints.

5.6.3 Homogenized piecewise linear formulations

Now suppose we are concerned with the bivariate perspective function of f , per f : R> × R→ R:

per f(v, w) := vf(w/v). (5.64)

This function is convex, since f is convex and the perspective function preserves convexity. The
three-dimensional gr per f corresponds to the cone generated by the 2-dimensional gr f :

(u, v, w) ∈ cl gr per f ⇔ (v, u, w) ∈ cl cone gr f. (5.65)

Initially, one might think to try to use a bivariate PWL formulation to approximate gr per f , but
this set is unbounded so these techniques do not directly apply. Even if the perspective variable v
is bounded by other constraints, the bivariate PWL formulations are significantly larger and more
complicated than univariate PWL formulations. By leveraging the conic structure of this set, we
can do better than a naive bivariate discretization. Indeed, the perspective function is ‘effectively
univariate’ in the sense that every point in gr per f is a ray that is in one-to-one correspondence
with a point in gr f .

Suppose we have L increasing points on the real line, (ωl)l∈JLK, and we are only concerned with
per f on the cone generated by the domain [ω1, ωL], i.e. on the set of rays {(1, w) : w ∈ [ω1, ωL]}.
On this domain, gr per pwl f corresponds to the cone generated by gr pwl f , and we can write:

cl gr per pwl f := cone∪l∈JL−1K conv{(ωl, f(ωl)), (ωl+1, f(ωl+1))} (5.66a)
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= ∪l∈JL−1K conv{cone{(ωl, f(ωl))}, cone{(ωl+1, f(ωl+1))}}. (5.66b)

This is a finite union of convex hulls of pairs of rays, i.e. a union of polyhedra with different recession
cones, so it is not MILP-representable in general. See Figure 5.6 for an illustration.

Figure 5.6: The cone cl gr per pwl f generated by cl gr pwl f , for the convex function f(w) = w2.
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Similarly to the univariate graph case, we can write a sandwiching relaxation of the nonconvex
constraint (u, v, w) ∈ cl gr per f , for (v, w) ∈ cone[ω1, ωL]. Suppose cl epi per f is a proper cone. Since
cl gr per f ⊂ cl epi per f ∩ cl hypo per pwl f on the domain of interest, we can relax the nonconvex
constraint to the conic constraint (u, v, w) ∈ cl epi per f and the homogenized PWL hypograph
constraint (u, v, w) ∈ cl hypo per pwl f .

We write an SOS2-linear formulation for (u, v, w) ∈ cl hypo per pwl f on (v, w) ∈ cone[ω1, ωL] by
homogenizing (with the perspective variable v) the SOS2-linear formulation for (u,w) ∈ hypo pwl f
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in (5.63): ∑
l∈JLKσlf(ωl) ≥ u, (5.67a)

σ′ω = w, (5.67b)

e′σ = v, (5.67c)

σ ≥ 0, (5.67d)

σ ∈ SOS2 . (5.67e)

Note that only constraint (5.63c) contains an affine constant (of 1), so this is the only constraint
modified by homogenization with v.

Although this SOS2-linear formulation (5.67) does not have an MILP reformulation in general,
we show in Section 5.6.4 that it is MI-conic-representable. Furthermore, if the perspective variable
v is bounded above, it is MILP-representable. We can use the homogenized PWL formulations
to formulate disjunctions of PWL constraints, by applying the copies-of-variables techniques in
Section 5.6.1. In this case, v is a binary variable, like the xi variables in (5.61).

5.6.4 Mixed-integer conic reformulations

There can be practical benefits to using mixed-integer formulations rather than SOS2 formulations.
Performance often scales worse for SOS2 formulations than for good mixed-integer formulations
(when they exist). We present seven MI-conic formulations for an SOS2 constraint σ ∈ SOS2.

These formulations modify/generalize either the convex combinations (CC) formulation or the
logarithmic independent branching (AKA LogIB) formulation discussed in Vielma, Ahmed, and
Nemhauser (2010) and Huchette and Vielma (2017). The CC formulations use L − 1 auxiliary
binary variables β and L+ 1 convex constraints. The LogIB formulations use only a logarithmic
number M = ⌈log2(L− 1)⌉ of auxiliary binary variables β and 2M convex constraints. This is an
optimal number of binary variables in the sense that we cannot formulate a union of L− 1 convex
sets with fewer than M binary variables in general. In practice for standard PWL constraints,
LogIB formulations tend to have better performance than CC formulations, and we expect that this
performance advantage should hold for the homogenized PWL formulations.

First, we present two formulations for σ ∈ SOS2 assuming σ is unconstrained. Since there
exists no MILP formulation for a union of unbounded polyhedra, these formulations must involve
non-polyhedral convex constraints. Similar to Hijazi and Liberti (2016) and Lubin, Vielma, and
Zadik (2022), we use standard rotated second order conic constraints. Recall Ksqr is defined as:

Ksqr :=
{
(u, v, w) ∈ R≥ × R≥ × Rd : 2uv ≥ ∥w∥2

}
. (5.68)

The formulations also introduce an auxiliary unbounded epigraph variable t ∈ R.
The free convex combinations (or FCC ) MISOCP formulation is:

e′β ≤ 1, (5.69a)
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(t, β1, σ1) ∈ Ksqr, (5.69b)

(t, βl−1 + βl, σl) ∈ Ksqr, ∀l ∈ {2, . . . , L− 1}, (5.69c)

(t, βL−1, σL) ∈ Ksqr, (5.69d)

β ∈ {0, 1}L−1. (5.69e)

The free log independent branching (or FLogIB) MISOCP formulation is:(
t, βo, (σl)l∈H1

o

)
∈ Ksqr, ∀o ∈ JMK, (5.70a)(

t, 1− βo, (σl)l∈H0
o

)
∈ Ksqr, ∀o ∈ JMK, (5.70b)

β ∈ {0, 1}M , (5.70c)

where H1
o,H0

o ⊂ JLK for o ∈ JMK correspond to particular subsets of σ variables (from reflected
Gray codes); see Vielma, Ahmed, and Nemhauser (2010). For each o ∈ JMK, these constraints (in
combination with the other constraints on σ) enforce:(

σl = 0,∀l ∈ H1
o

)
∨
(
σl = 0, ∀l ∈ H0

o

)
. (5.71)

Note the FCC formulation uses only three-dimensional Ksqr cones, but the FLogIB Ksqr cones may
be higher dimensional.

Next, we assume that σ is nonnegative (as in the PWL formulations), which allows us to improve
the FCC formulation by reducing the dimension of each Ksqr cone in (5.70) to three. The nonnegative
log independent branching (or NLogIB) MISOCP formulation is:(

t, βo,
∑

l∈H1
o
σl
)
∈ Ksqr, ∀o ∈ JMK, (5.72a)(

t, 1− βo,
∑

l∈H0
o
σl
)
∈ Ksqr, ∀o ∈ JMK, (5.72b)

β ∈ {0, 1}M . (5.72c)

This is the first logarithmic-sized MI-convex formulation for a finite union of convex sets with
different recession cones (we presented this formulation during the talk by Coey (2018)).

Next, we assume that σ is nonnegative and sums to the perspective variable v ≤ 1 (as in the
homogenized PWL formulation (5.67)). This implies σ ∈ [0, 1]L, so we have a finite union of bounded
polyhedra, hence we can write MILP formulations. The bounded convex combinations (or BCC )
MILP formulation is:

e′β = 1, (5.73a)

σ1 ≤ β1, (5.73b)

σl ≤ βl−1 + βl ∀l ∈ {2, . . . , L− 1}, (5.73c)

σL ≤ βL−1, (5.73d)

β ∈ {0, 1}L−1. (5.73e)
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The bounded log independent branching (or BLogIB) MILP formulation is:∑
l∈H1

o
σl ≤ βo ∀o ∈ JMK, (5.74a)∑

l∈H0
o
σl ≤ 1− βo ∀o ∈ JMK, (5.74b)

β ∈ {0, 1}M . (5.74c)

Finally, we impose the additional assumption that v is binary, i.e. we have e′σ = v ∈ {0, 1}.
We improve the BCC formulation (5.73) by homogenizing the constraint (5.73a) with v to get the
disjunctive convex combinations (or DCC ) MILP formulation:

e′β ≤ v, (5.75a)

σ1 ≤ β1, (5.75b)

σl ≤ βl−1 + βl ∀l ∈ {2, . . . , L− 1}, (5.75c)

σL ≤ βL−1, (5.75d)

β ∈ {0, 1}L−1. (5.75e)

Note that v = 1 recovers the BCC formulation, and v = 0 forces all binary variables β to zero, hence
no further branching is needed.

Similarly, for the BLogIB formulation in (5.74), we homogenize (5.74b) to get the disjunctive log
independent branching (or DLogIB) MILP formulation:∑

l∈H1
o
σl ≤ βo ∀o ∈ JMK, (5.76a)∑

l∈H0
o
σl ≤ v − βo ∀o ∈ JMK, (5.76b)

β ∈ {0, 1}M . (5.76c)

Note that v = 1 recovers the BLogIB formulation. Furthermore, (5.76b) and the nonnegativity
of σ implies that v ≥ βo, ∀o ∈ JMK. Thus both the DCC and DLogIB formulations have the nice
branching property that v = 0 forces β = 0.

5.6.5 Examples for disjunctive formulations and nonconvex relaxations

5.6.5.1 Ball packing

We choose the centers and radii of m ℓ2 norm balls in n-dimensional space, maximizing the sum of
the radii such that the balls are non-overlapping and fit inside the unit box [0, 1]n. For ball i ∈ JmK,
we let the center be ci ∈ Rn and the radius be ri ≥ 0. The high-level nonconvex model is:

maxr,c e′r : (5.77a)

0 ≤ r ≤ e/2, (5.77b)
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rie ≤ ci ≤ (1− ri)e ∀i ∈ JmK, (5.77c)

ci,1 ≤ ci+1,1 ∀i ∈ Jm− 1K, (5.77d)

ri + rj ≤ ∥ci − cj∥ ∀i, j ∈ JmK : i < j. (5.77e)

Note (5.77d) simply breaks some of the symmetry in the problem.
For each i, j ∈ JmK : i < j, the nonconvex constraint (5.77e) is equivalent to the following EF in

terms of auxiliary variables xi,j ∈ R and λi,j ∈ Rn:

xi,j = ri + rj , (5.78a)

xi,j ≤ e′λi,j , (5.78b)

(λi,j,k, xi,j , ci,k − cj,k) ∈ hypo gr per f ∀k ∈ JnK, (5.78c)

where f is the univariate square function, i.e. f(w) = w2. Now the nonconvexity only appears in
the three-dimensional hypograph constraints (5.78c). Note ci,k − cj,k ∈ [−1, 1],∀k ∈ JnK, and the
perspective variable is xi,j ∈ [0, 1].

We apply the homogenized PWL techniques introduced in Section 5.6.3 to formulate a relaxation
of (5.78c) for each k ∈ JnK. Consider L breakpoints ω ∈ [−1, 1]L (e.g. linearly spaced). In terms of
auxiliary SOS2 variables σi,j,k ∈ RL, the SOS2-linear relaxation is:

ω′σi,j,k = ci,k − cj,k, (5.79a)∑
l∈JLKω

2
l σi,j,k,l = λi,j,k, (5.79b)

e′σi,j,k = xi,j , (5.79c)

σi,j,k ≥ 0, (5.79d)

σi,j,k ∈ SOS2 . (5.79e)

To (optionally) obtain an MI-conic relaxation, we can replace the SOS2 constraints (5.79e) with
an MI-conic formulation from Section 5.6.4. Since σi,j,k is constrained by (5.79c) and (5.79d) and
xi,j ∈ [0, 1], we can use the bounded MILP formulations BCC and BLogIB.

For our experiments, we generate random instances with m = 4 balls in n = 3 dimensions,
with various numbers of breakpoints L (linearly spaced) in each of the nm(m − 1)/2 = 18 three-
dimensional homogenized piecewise linear constraints. Since the formulations are linear, there is no
need for outer approximation (hence the number of iterations is zero), so we report results from
Gurobi directly, including the number of branch-and-bound nodes Gurobi uses. We run the SOS2
formulation itself (which is not an MILP but can be handled by Gurobi) and the BCC and BLogIB
MILP formulations. All instances are feasible and bounded. We verify near-feasibility of the solutions
returned by checking the original nonconvex norm constraints (5.77e) are almost satisfied.

Our results are summarized in Table 5.13. For each instance, Gurobi either converges or hits a
time limit. BCC only solves the smallest two sizes, SOS2 solves the first five, and BLogIB solves
the first nine. Furthermore, BLogIB achieves the fastest solve times on all instances solved. The
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number of nodes Gurobi explores stays relatively constant across the sizes for BLogIB, but generally
seems to increase for the other two formulations (on the instances they converge on).

Table 5.13: Ball packing solver statistics.

SOS2 BLogIB BCC

pts st nodes time st nodes time st nodes time

7 co 123085 1.8 co 106705 1.6 co 171052 5.8
15 co 276230 8.1 co 167918 2.8 co 1785870 45
31 co 414870 17 co 120577 3.1 tl 15856119 600
63 co 1129736 131 co 98307 5.4 tl 5630500 600

127 co 617139 197 co 94581 12 tl 469856 600
255 tl 17987954 600 co 48040 14 tl 10950 600
511 tl 10183066 600 co 88807 38 tl 1041167 600

1023 tl 3675673 600 co 134039 161 tl 173870 600
2047 tl 1106535 600 co 132643 562 tl 11399 600
4095 tl 384702 600 tl 66445 600 tl 469 600
8191 tl 137973 601 tl 26286 601 tl 79 602

5.6.5.2 Modular design with convex constraints

We design a modular device (e.g. a robot) by selecting parts (e.g. a battery, actuators, sensors) from
a catalog. For each module, we choose one corresponding part, satisfying constraints associated
with that particular part. These constraints involve certain nonnegative global design variables (e.g.
weight, torque, lifetime, wattage). We minimize the cost of the parts plus a linear function of the
design variables. Suppose there are n design variables y ∈ Rn, which are associated with costs vector
d and are bounded by below by ymin ≥ 0 and above by ymax. Suppose there are m modules and p
different part choices per module. Let xi,j ,∀i ∈ JmK, j ∈ JpK be a binary variable equal to one if and
only if the jth part is selected for the ith module, at a cost of ci,j . When part (i, j) is selected, it
imposes certain constraints on the design variables; we represent these constraints as y ∈ Ci,j ⊂ Rn.
In this section, we suppose that each set Ci,j is convex, and in the following section Section 5.6.5.3,
we suppose Ci,j is nonconvex.

The high-level model is:

minx,y d′y +
∑

i∈JmK,j∈JpKci,jxi,j : (5.80a)

xi,j ∈ {0, 1} ∀i ∈ JmK, j ∈ JpK, (5.80b)∑
j∈JpKxi,j = 1 ∀i ∈ JmK, (5.80c)

ymin ≤ y ≤ ymax, (5.80d)

xi,j = 1 ⇒ y ∈ Ci,j ∀i ∈ JmK, j ∈ JpK. (5.80e)
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Suppose that for each i ∈ JmK, j ∈ JpK, the set Ci,j ⊂ Rn is convex and representable as follows:

y ∈ Ci,j ⇔ bi,j − a′i,jy ≥ fi,j(hi,j −Gi,jy), (5.81)

where fi,j : RK → R is a convex function, bi,j ∈ R, ai,j ∈ Rn, hi,j ∈ RK , and Gi,j ∈ RK×n for some
K ≥ 1. Suppose further that fi,j is a nonhomogeneous separable spectral function, such as one of the
MMD functions discussed in Section 3.6, and let Ki,j represent the corresponding proper separable
spectral vector function cone:

Ki,j := Ksep(fi,j) = cl epi per fi,j . (5.82)

Then a conic formulation for y ∈ Ci,j is:(
bi,j − a′i,jy, 1, hi,j −Gi,jy

)
∈ Ki,j ⊂ R2+K . (5.83)

For the disjunctive implication constraints (5.80e), we apply the tight conic copies-of-variables
formulation discussed in Section 5.6.1 with auxiliary copy variables zi,j ∈ Rn. Using the disjunctive
variables xi,j , we homogenize the bounds (5.80d) and the affine functions in (5.83). This yields the
conic form model:

minx,y,z d′y +
∑

i∈JmK,j∈JpKci,jxi,j : (5.84a)∑
j∈JpKxi,j = 1 ∀i ∈ JmK, (5.84b)∑
j∈JpKzi,j = y ∀i ∈ JmK, (5.84c)

zi,j − yminxi,j ∈ Rn≥ ∀i ∈ JmK, j ∈ JpK, (5.84d)

ymaxxi,j − zi,j ∈ Rn≥ ∀i ∈ JmK, j ∈ JpK, (5.84e)(
bi,jxi,j − a′i,jzi,j , xi,j , hi,jxi,j −Gi,jzi,j

)
∈ Ki,j ∀i ∈ JmK, j ∈ JpK, (5.84f)

xi,j ∈ {0, 1} ∀i ∈ JmK, j ∈ JpK. (5.84g)

We generate random instances of (5.84) with m = 6 modules and p = 5 part options per
module, with various numbers of design variables n and convex function dimension K = ⌊n/2⌋.
For i ∈ JmK, j ∈ JpK, we select each convex function fi,j : RK≥ → R randomly from a list of MMD
functions (see Section 3.6): NegEntropy, NegSqrt, NegPower(0.8), Power(2.0). The cost parameters
d, ci,j , variable bounds ymin, ymax, and affine data for the conic constraints (including sparse matrices
Gi,j) are generated to ensure the instances are feasible and bounded. We verify that solutions
returned by MOIPajarito are feasible for the disjunctions of convex constraints.

Our results are summarized in Table 5.14. nat uses the NF for Hypatia and the EF in the
OA model, and noext differs in that it uses the NF in the OA model. The timings and iteration
counts are very similar across all sizes, indicating that for these instances, there is no benefit to
using EFs. The very low iteration counts indicate that the continuous relaxations of our MI-conic
copies-of-variables formulations are very strong (as the theory predicts). For example, for n = 20,
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MOIPajarito needs no OA iterations, as Hypatia’s continuous relaxation solution is detected to
be integral to the desired tolerances. For several instances, we notice that MOIPajarito iterations
repeat the same integral solution, simply adding rounds of separation cuts to improve the objective
bound until the desired optimality gap is reached.

Table 5.14: Modular design with convex constraints solver statistics.

nat noext

n st it time st it time

20 co 0 0.3 co 0 0.2
40 co 1 5.2 co 1 1.9
60 co 1 5.4 co 1 5.3
80 co 2 18 co 2 18

100 co 3 79 co 3 81
120 co 4 167 co 4 143
140 co 1 99 co 1 89
160 co 5 358 co 6 571
180 co 1 164 co 1 136
200 co 1 373 co 1 375
220 tl 3 602 tl 3 604

5.6.5.3 Modular design with nonconvex constraints

As in Section 5.6.5.2, we start with the high-level modular design model (5.80). However, now we
assume that for each i ∈ JmK, j ∈ JpK, the set Ci,j ⊂ Rn is nonconvex. Specifically, we change the
epigraph constraint (5.81) to a graph constraint:

y ∈ Ci,j ⇔ bi,j − a′i,jy = fi,j(hi,j −Gi,jy). (5.85)

Since fi,j : RK → R is still assumed to be a convex separable spectral function, we can write a
disaggregated formulation for (5.85) in terms of auxiliary variables λi,j ∈ RK and wi,j ∈ RK :

wi,j = hi,j −Gi,jy, (5.86a)

bi,j − a′i,jy = e′λi,j , (5.86b)

λi,j,k = fi,j(wi,j,k) ∀k ∈ JKK. (5.86c)

Now the nonconvexity only appears in each 2-dimensional graph constraint (5.86c).
Using the PWL techniques in Section 5.6.2, we can formulate a sandwiching relaxation for each

graph constraint (5.86c). We first compute lower and upper bounds on each wi,j,k, which are finite
since we have finite bounds on y. We intersect these bounds with the natural domain of fi,j and
select L breakpoints ωi,j,k,l, ∀l ∈ JLK between these bounds (e.g. linearly spaced). For k ∈ JKK, the
SOS2-convex sandwiching relaxation of (5.86c) is:

λi,j,k ≥ fi,j(wi,j,k), (5.87a)
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λi,j,k ≤
∑

l∈Lfi,j(ωi,j,k,l)σi,j,k,l, (5.87b)

ω′
i,j,kσi,j,k = wi,j,k, (5.87c)

e′σi,j,k = 1, (5.87d)

σi,j,k ≥ 0, (5.87e)

σi,j,k ∈ SOS2 . (5.87f)

So we can write an SOS2-convex relaxation of y ∈ Ci,j , but we have yet to formulate the
disjunctions over these constraints for each module/part. We again apply the copies-of-variables
formulation from Section 5.6.1, introducing auxiliary copy variables zi,j of y. We homogenize the
bound constraints and the sandwiching relaxation constraints (5.87). Following the homogenized
PWL techniques introduced in Section 5.6.3, we get three-dimensional proper cone constraints from
(5.87a) and SOS2-linear constraints from the PWL hypograph constraints in (5.87). The resulting
SOS2-conic model is:

minx,y,z,w,λ,σ d′y +
∑

i∈JmK,j∈JpKci,jxi,j : (5.88a)∑
j∈JpKxi,j = 1 ∀i ∈ JmK, (5.88b)∑
j∈JpKzi,j = y ∀i ∈ JmK, (5.88c)

bi,jxi,j − a′i,jzi,j = e′λi,j ∀i ∈ JmK, j ∈ JpK, (5.88d)

hi,jxi,j −Gi,jzi,j = wi,j ∀i ∈ JmK, j ∈ JpK, (5.88e)

e′σi,j,k = xi,j ∀i ∈ JmK, j ∈ JpK, k ∈ JKK, (5.88f)

ω′
i,j,kσi,j,k = wi,j,k ∀i ∈ JmK, j ∈ JpK, k ∈ JKK, (5.88g)

zi,j − yminxi,j ∈ Rn≥ ∀i ∈ JmK, j ∈ JpK, (5.88h)

ymaxxi,j − zi,j ∈ Rn≥ ∀i ∈ JmK, j ∈ JpK, (5.88i)

(λi,j,k, xi,j , wi,j,k) ∈ Ki,j ∀i ∈ JmK, j ∈ JpK, k ∈ JKK, (5.88j)∑
l∈Lfi,j(ωi,j,k,l)σi,j,k,l − λi,j,k ∈ R≥ ∀i ∈ JmK, j ∈ JpK, k ∈ JKK, (5.88k)

σi,j,k ∈ RL≥ ∀i ∈ JmK, j ∈ JpK, k ∈ JKK, (5.88l)

σi,j,k ∈ SOS2 ∀i ∈ JmK, j ∈ JpK, k ∈ JKK, (5.88m)

xi,j ∈ {0, 1} ∀i ∈ JmK, j ∈ JpK. (5.88n)

Note that in (5.88j), the proper cones Ki,j (defined in (5.82)) are three-dimensional, whereas in the
convex case in Section 5.6.5.2 they were (2 +K)-dimensional. To (optionally) obtain an MI-conic
formulation of (5.88), we can replace the SOS2 constraints (5.88m) with an MI-conic formulation
from Section 5.6.4. Note that for each i ∈ JmK, j ∈ JpK, k ∈ JKK, the σi,j,k variables are nonnegative
and sum to the binary variable xi,j by (5.88f). Thus we can use either of the disjunctive SOS2 MILP
formulations - DCC and DLogIB - from (5.88).

We generate random instances with m = 3 modules and p = 3 part options per module, with
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various numbers of design variables n. As in the convex constraints case in Section 5.6.5.2, we let
K = ⌊n/2⌋ and select the functions fi,j : RK≥ → R randomly from the same list of four MMD functions.
We use L = 512 breakpoints (linearly spaced) in each of the mpK = 9⌊n/2⌋ three-dimensional
homogenized piecewise linear constraints.

We run three formulations for (5.88): the SOS2 formulation itself, and the DCC and DLogIB
MI-conic formulations. To enable MOIPajarito to handle SOS2 constraints, we turn off conic
subproblem solves and use separation cuts instead. We do this for all three formulations to ensure
fair comparisons, though it is not necessary for the MI-conic formulations. All instances are feasible
and bounded. We verify that solutions returned by MOIPajarito are near-feasible for the disjunctions
of nonconvex constraints.

Our results are summarized in Table 5.15. For each instance, MOIPajarito either converges
or hits a time limit. DCC only solves five small instances, and is the slowest. SOS2 and DLogIB
converge up to size n = 22, and DLogIB additionally converges on n = 26. Up to n = 12, SOS2 is
generally faster than DLogIB, but DLogIB is usually faster for larger sizes. The number of iterations
varies across the formulations without a clear pattern. We would expect this to be more consistent
because the formulations are equivalent, but since Gurobi does not solve the OA model exactly at
each iteration of MOIPajarito, we can get slightly different OA solutions from Gurobi.

Table 5.15: Modular design with nonconvex constraints solver statistics.

SOS2 DLogIB DCC

n st it time st it time st it time

4 co 7 4.2 co 8 9.9 co 7 95
6 co 15 7.6 co 14 13 co 14 166
8 co 26 27 co 15 30 tl 18 600

10 co 13 17 co 16 28 co 21 483
12 co 36 268 co 53 395 co 13 144
14 co 28 92 co 24 84 co 25 475
16 co 21 447 co 23 333 tl 10 600
18 co 27 195 co 27 206 tl 12 600
20 co 40 475 co 28 273 ∗ ∗ ∗
22 co 35 480 co 33 219 ∗ ∗ ∗
24 tl 13 600 tl 21 600 ∗ ∗ ∗
26 tl 61 600 co 23 149 ∗ ∗ ∗
28 tl 36 600 tl 28 600 ∗ ∗ ∗
30 tl 43 600 tl 61 600 ∗ ∗ ∗

213



Bibliography

Agrawal, Akshay, Steven Diamond, and Stephen Boyd (2019). “Disciplined geometric programming”.
In: Optimization Letters 13.5, pp. 961–976.

Ahmadi, Amir Ali and Georgina Hall (2015). “Sum of squares basis pursuit with linear and second
order cone programming”. In: arXiv preprint arXiv:1510.01597. eprint: 1510.01597.

Andersen, Erling D, Cornelis Roos, and Tamas Terlaky (2003). “On implementing a primal-dual
interior-point method for conic quadratic optimization”. In: Mathematical Programming 95.2,
pp. 249–277.

Andersen, Martin et al. (2011). “Interior-point methods for large-scale cone programming”. In:
Optimization for Machine Learning 5583.

Andersen, Martin S, Joachim Dahl, and Lieven Vandenberghe (2013). “Logarithmic barriers for
sparse matrix cones”. In: Optimization Methods and Software 28.3, pp. 396–423.

Aylward, Erin M, Pablo A Parrilo, and Jean-Jacques E Slotine (2008). “Stability and robustness
analysis of nonlinear systems via contraction metrics and SOS programming”. In: Automatica
44.8, pp. 2163–2170.

Baes, Michel (2007). “Convexity and differentiability properties of spectral functions and spectral
mappings on Euclidean Jordan algebras”. In: Linear algebra and its applications 422.2-3, pp. 664–
700. doi: 10.1016/j.laa.2006.11.025.

Belotti, Pietro et al. (May 2013). “Mixed-integer nonlinear optimization”. In: Acta Numerica 22,
pp. 1–131. issn: 1474-0508. doi: 10.1017/s0962492913000032.

Ben-Tal, Ahron and Arkadi Nemirovski (2001). Lectures on modern convex optimization: analysis,
algorithms, and engineering applications. Vol. 2. SIAM.

Bertsimas, Dimitris, Jourdain Lamperski, and Jean Pauphilet (2020). “Certifiably optimal sparse
inverse covariance estimation”. In: Mathematical Programming 184.1, pp. 491–530.

Bezanson, Jeff et al. (2017). “Julia: A fresh approach to numerical computing”. In: SIAM Review
59.1, pp. 65–98.

Blekherman, Grigoriy (2012). “Nonnegative polynomials and sums of squares”. In: Journal of the
American Mathematical Society 25.3, pp. 617–635.

Bonami, Pierre, Lorenz T. Biegler, et al. (2008). “An algorithmic framework for convex mixed
integer nonlinear programs”. In: Discrete Optimization 5.2, pp. 186–204. issn: 1572-5286. doi:
10.1016/j.disopt.2006.10.011.

214

1510.01597
https://doi.org/10.1016/j.laa.2006.11.025
https://doi.org/10.1017/s0962492913000032
https://doi.org/10.1016/j.disopt.2006.10.011


Bonami, Pierre, Mustafa Kılınç, and Jeff Linderoth (2012). “Algorithms and Software for Convex
Mixed Integer Nonlinear Programs”. English. In: Mixed Integer Nonlinear Programming. Ed. by
Jon Lee and Sven Leyffer. Vol. 154. The IMA Volumes in Mathematics and its Applications.
Springer New York, pp. 1–39. isbn: 978-1-4614-1926-6. doi: 10.1007/978-1-4614-1927-3_1.

Borchers, Brian (1999). “CSDP, A C library for semidefinite programming”. In: Optimization Methods
and Software 11.1-4, pp. 613–623.

Boyd, Stephen (2009). EE363 Review Session 4: Linear Matrix Inequalities. University Lecture. url:
https://stanford.edu/class/ee363/sessions/s4notes.pdf.

Boyd, Stephen, Laurent El Ghaoui, et al. (1994). Linear matrix inequalities in system and control
theory. Vol. 15. SIAM.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex optimization. Cambridge University Press.
Burer, Samuel (2003). “Semidefinite programming in the space of partial positive semidefinite

matrices”. In: SIAM Journal on Optimization 14.1, pp. 139–172.
Burkardt, John (2016). Polynomials for Global Optimization Tests. Accessed: 2021-03-22. url:

https://people.sc.fsu.edu/~jburkardt/py_src/polynomials/polynomials.html.
Carlen, Eric (2010). “Trace inequalities and quantum entropy: an introductory course”. In: Entropy

and the quantum 529, pp. 73–140. doi: 10.1090/conm/529/10428.
Chandrasekaran, Venkat and Parikshit Shah (2016). “Relative entropy relaxations for signomial

optimization”. In: SIAM Journal on Optimization 26.2, pp. 1147–1173.
— (2017). “Relative entropy optimization and its applications”. In: Mathematical Programming

161.1-2, pp. 1–32.
Chares, Robert (2009). “Cones and interior-point algorithms for structured convex optimization

involving powers andexponentials”. PhD thesis. Ph. D. Thesis, UCL-Université Catholique de
Louvain, Louvain-la-Neuve, Belgium.

Chen, Lisha and Jianhua Z Huang (2012). “Sparse reduced-rank regression for simultaneous dimension
reduction and variable selection”. In: Journal of the American Statistical Association 107.500,
pp. 1533–1545.

Chen, Yanqing et al. (2008). “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization
and update/downdate”. In: ACM Transactions on Mathematical Software (TOMS) 35.3, pp. 1–14.

Coey, Chris (July 2018). “Using algebraic structure to accelerate polyhedral approximation”. Unpub-
lished; talk slides, International Symposium on Mathematical Programming (Bordeaux).

Coey, Chris, Lea Kapelevich, and Juan Pablo Vielma (2021a). Conic optimization with spectral
functions on Euclidean Jordan algebras. arXiv: 2103.04104 [math.OC].

— (2021b). Hypatia cones reference. Online; accessed 1-June-2021. url: https://github.com/
chriscoey/Hypatia.jl/wiki/.

— (2021c). Hypatia documentation. Online; accessed 7-June-2021. url: https://chriscoey.github.
io/Hypatia.jl/dev/.

— (2021d). Performance enhancements for a generic conic interior point algorithm. arXiv: 2107.
04262 [math.OC].

215

https://doi.org/10.1007/978-1-4614-1927-3_1
https://stanford.edu/class/ee363/sessions/s4notes.pdf
https://people.sc.fsu.edu/~jburkardt/py_src/polynomials/polynomials.html
https://doi.org/10.1090/conm/529/10428
https://arxiv.org/abs/2103.04104
https://github.com/chriscoey/Hypatia.jl/wiki/
https://github.com/chriscoey/Hypatia.jl/wiki/
https://chriscoey.github.io/Hypatia.jl/dev/
https://chriscoey.github.io/Hypatia.jl/dev/
https://arxiv.org/abs/2107.04262
https://arxiv.org/abs/2107.04262


Coey, Chris, Lea Kapelevich, and Juan Pablo Vielma (2021e). Solving natural conic formulations
with Hypatia.jl. arXiv: 2005.01136 [math.OC].

Coey, Chris, Miles Lubin, and Juan Pablo Vielma (2020). “Outer approximation with conic certificates
for mixed-integer convex problems”. In: Mathematical Programming Computation 12, pp. 249–293.

d’Aspremont, Alexandre et al. (2007). “A direct formulation for sparse PCA using semidefinite
programming”. In: SIAM review 49.3, pp. 434–448.

Dahl, Joachim and Erling D Andersen (2021). “A primal-dual interior-point algorithm for nonsym-
metric exponential-cone optimization”. In: Mathematical Programming, pp. 1–30.

Davis, Chandler (1957). “All convex invariant functions of Hermitian matrices”. In: Archiv der
Mathematik 8.4, pp. 276–278. doi: 10.1007/bf01898787.

Deng, Chun Yuan (2011). “A generalization of the Sherman–Morrison–Woodbury formula”. In:
Applied Mathematics Letters 24.9, pp. 1561–1564. doi: 10.1016/j.aml.2011.03.046.

Diamond, Steven and Stephen Boyd (2016). “CVXPY: A Python-embedded modeling language for
convex optimization”. In: The Journal of Machine Learning Research 17.1, pp. 2909–2913.

Dolan, Elizabeth D and Jorge J Moré (2002). “Benchmarking optimization software with performance
profiles”. In: Mathematical programming 91.2, pp. 201–213.

Domahidi, Alexander, Eric Chu, and Stephen Boyd (2013). “ECOS: An SOCP solver for embedded
systems”. In: 2013 European Control Conference (ECC). IEEE, pp. 3071–3076.

Drewes, Sarah and Stefan Ulbrich (2012). “Subgradient Based Outer Approximation for Mixed Integer
Second Order Cone Programming”. English. In: Mixed Integer Nonlinear Programming. Ed. by
Jon Lee and Sven Leyffer. Vol. 154. The IMA Volumes in Mathematics and its Applications.
Springer New York, pp. 41–59. isbn: 978-1-4614-1926-6. doi: 10.1007/978-1-4614-1927-3_2.

Dunning, Iain, Joey Huchette, and Miles Lubin (2017). “JuMP: A modeling language for mathematical
optimization”. In: SIAM Review 59.2, pp. 295–320.

Faraut, Jacques and Adam Koranyi (1998). “Analysis on symmetric cones”. In: Bull. Amer. Math.
Soc 35, pp. 77–86.

Fawzi, Hamza and Omar Fawzi (2018). “Efficient optimization of the quantum relative entropy”. In:
Journal of Physics A: Mathematical and Theoretical 51.15, p. 154003.

Fawzi, Hamza, James Saunderson, and Pablo A Parrilo (2019). “Semidefinite approximations of the
matrix logarithm”. In: Foundations of Computational Mathematics 19.2, pp. 259–296.

Faybusovich, Leonid and Takashi Tsuchiya (2017). “Matrix monotonicity and self-concordance: how to
handle quantum entropy in optimization problems”. In: Optimization Letters 11.8, pp. 1513–1526.
doi: 10.1007/s11590-017-1145-6.

Faybusovich, Leonid and Cunlu Zhou (2021). “Long-step path-following algorithm for quantum
information theory: Some numerical aspects and applications”. In: Numerical Algebra, Control &
Optimization. doi: 10.3934/naco.2021017. eprint: 1906.00037.

Fleming, Philip J and John J Wallace (1986). “How not to lie with statistics: the correct way to
summarize benchmark results”. In: Communications of the ACM 29.3, pp. 218–221.

216

https://arxiv.org/abs/2005.01136
https://doi.org/10.1007/bf01898787
https://doi.org/10.1016/j.aml.2011.03.046
https://doi.org/10.1007/978-1-4614-1927-3_2
https://doi.org/10.1007/s11590-017-1145-6
https://doi.org/10.3934/naco.2021017
1906.00037


Friberg, Henrik A (2016). “CBLIB 2014: A benchmark library for conic mixed-integer and continuous
optimization”. In: Mathematical Programming Computation 8.2, pp. 191–214.

Furuta, Takayuki (2008). “Concrete examples of operator monotone functions obtained by an
elementary method without appealing to Löwner integral representation”. In: Linear algebra and
its applications 429.5-6, pp. 972–980. doi: 10.1016/j.laa.2006.11.023.

Gally, Tristan, Marc E. Pfetsch, and Stefan Ulbrich (2018). “A framework for solving mixed-
integer semidefinite programs”. In: Optimization Methods and Software 33.3, pp. 594–632. doi:
10.1080/10556788.2017.1322081.

Gould, Nicholas and Jennifer Scott (2016). “A note on performance profiles for benchmarking
software”. In: ACM Transactions on Mathematical Software (TOMS) 43.2, pp. 1–5.

Grant, Michael and Stephen Boyd (2014). CVX: MATLAB software for disciplined convex program-
ming, version 2.1.

Grant, Michael, Stephen Boyd, and Yinyu Ye (2006). “Disciplined convex programming”. In: Global
optimization. Springer, pp. 155–210.

Güler, Osman (1996). “Barrier functions in interior point methods”. In: Mathematics of Operations
Research 21.4, pp. 860–885.

Güler, Osman and Levent Tunçel (1998). “Characterization of the barrier parameter of homogeneous
convex cones”. In: Mathematical programming 81.1, pp. 55–76.

Gurobi (2022). Documentation: Choosing the right algorithm. url: https://www.gurobi.com/
documentation/9.5/refman/choosing_the_right_algorit.html.

Hall, Georgina (2019). “Engineering and business applications of sum of squares polynomials”. In:
arXiv preprint arXiv:1906.07961.

Henrion, Didier and Milan Korda (2013). “Convex computation of the region of attraction of
polynomial control systems”. In: IEEE Transactions on Automatic Control 59.2, pp. 297–312.

Hijazi, Hassan, Pierre Bonami, and Adam Ouorou (2014). “An outer-inner approximation for separable
mixed-integer nonlinear programs”. In: INFORMS Journal on Computing 26.1, pp. 31–44.

Hijazi, Hassan and Leo Liberti (2016). “Constraint qualification failure in action”. In: Operations
Research Letters 44.4, pp. 503–506.

Hsieh, Cho-Jui et al. (2012). “A divide-and-conquer procedure for sparse inverse covariance estimation”.
In: Proceedings of the 25th International Conference on Neural Information Processing Systems-
Volume 2, pp. 2330–2338.

Huchette, Joey and Juan Pablo Vielma (2017). “Nonconvex piecewise linear functions: Advanced
formulations and simple modeling tools”. In: arXiv preprint arXiv:1708.00050.

Kapelevich, Lea, Chris Coey, and Juan Pablo Vielma (2021). Sum of squares generalizations for
conic sets. arXiv: 2103.11499 [math.OC].

Karimi, Mehdi and Levent Tunçel (2020a). Domain-Driven Solver (DDS) Version 2.0: a MATLAB-
based Software Package for Convex Optimization Problems in Domain-Driven Form. arXiv:
1908.03075 [math.OC].

217

https://doi.org/10.1016/j.laa.2006.11.023
https://doi.org/10.1080/10556788.2017.1322081
https://www.gurobi.com/documentation/9.5/refman/choosing_the_right_algorit.html
https://www.gurobi.com/documentation/9.5/refman/choosing_the_right_algorit.html
https://arxiv.org/abs/2103.11499
https://arxiv.org/abs/1908.03075


Karimi, Mehdi and Levent Tunçel (2020b). “Primal–Dual Interior-Point Methods for Domain-Driven
Formulations”. In: Mathematics of Operations Research 45.2, pp. 591–621.

Kim, Sunyoung, Masakazu Kojima, and Makoto Yamashita (2003). “Second Order Cone Programming
Relaxation of a Positive Semidefinite Constraint”. In: Optimization Methods and Software 18.5,
pp. 535–541. doi: 10.1080/1055678031000148696.

Korda, Milan, Didier Henrion, and Colin N Jones (2016). “Controller design and value function
approximation for nonlinear dynamical systems”. In: Automatica 67, pp. 54–66.

Kwong, Man Kam (1989). “Some results on matrix monotone functions”. In: Linear Algebra and Its
Applications 118, pp. 129–153. doi: 10.1016/0024-3795(89)90577-6.

Lasserre, Jean B (1998). “Homogeneous functions and conjugacy”. In: Journal of Convex Analysis 5,
pp. 397–404.

Laurent, Monique and Teresa Piovesan (2015). “Conic approach to quantum graph parameters
using linear optimization over the completely positive semidefinite cone”. In: SIAM Journal on
Optimization 25.4, pp. 2461–2493.

Legat, Benoit et al. (2020). “MathOptInterface: a data structure for mathematical optimization
problems”. In: arXiv preprint arXiv:2002.03447.

Legat, Benoît et al. (June 2021). JuliaPolyhedra/Polyhedra.jl: v0.6.16. Version v0.6.16. doi: 10.
5281/zenodo.4993670.

Leyffer, Sven (Dec. 1993). “Deterministic Methods for Mixed Integer Nonlinear Programming”.
PhD thesis. University of Dundee.

Löwner, Karl (1934). “Über monotone matrixfunktionen”. In: Mathematische Zeitschrift 38.1, pp. 177–
216. doi: 10.1007/bf01170633.

Lubin, Miles, Juan Pablo Vielma, and Ilias Zadik (2022). “Mixed-integer convex representability”. In:
Mathematics of Operations Research 47.1, pp. 720–749.

Lubin, Miles, Emre Yamangil, et al. (2016). “Extended Formulations in Mixed-Integer Convex
Programming”. In: Integer Programming and Combinatorial Optimization: 18th International
Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings. Ed. by Quentin Louveaux
and Martin Skutella. Cham: Springer International Publishing, pp. 102–113. isbn: 978-3-319-
33461-5. doi: 10.1007/978-3-319-33461-5_9.

— (Sept. 2017). “Polyhedral approximation in mixed-integer convex optimization”. In: Mathematical
Programming. issn: 1436-4646. doi: 10.1007/s10107-017-1191-y.

Lubin, Miles, Ilias Zadik, and Juan Pablo Vielma (2017). “Regularity in mixed-integer convex
representability”. In: arXiv preprint arXiv:1706.05135.

M.S. Andersen, J. Dahl, L. Vandenberghe (2021). CVXOPT User’s Guide - Cone Programming
- Algorithm Parameters. url: https://cvxopt.org/userguide/coneprog.html#algorithm-
parameters.

Mazumder, Rahul et al. (2019). “A computational framework for multivariate convex regression and
its variants”. In: Journal of the American Statistical Association 114.525, pp. 318–331.

218

https://doi.org/10.1080/1055678031000148696
https://doi.org/10.1016/0024-3795(89)90577-6
https://doi.org/10.5281/zenodo.4993670
https://doi.org/10.5281/zenodo.4993670
https://doi.org/10.1007/bf01170633
https://doi.org/10.1007/978-3-319-33461-5_9
https://doi.org/10.1007/s10107-017-1191-y
https://cvxopt.org/userguide/coneprog.html#algorithm-parameters
https://cvxopt.org/userguide/coneprog.html#algorithm-parameters


Mehrotra, Sanjay (1992). “On the implementation of a primal-dual interior point method”. In: SIAM
Journal on Optimization 2.4, pp. 575–601.

MOSEK ApS (2020a). Modeling Cookbook revision 3.2.1. url: https://docs.mosek.com/modeling-
cookbook/index.html.

— (2020b). MOSEK Fusion API for Python. url: https://docs.mosek.com/9.1/pythonfusion/
index.html.

— (2022). MOSEK Optimizer API for Java 9.3.14. url: https://docs.mosek.com/latest/
javaapi/index.html.

Murray, Riley, Venkat Chandrasekaran, and Adam Wierman (2020). “Signomial and polynomial
optimization via relative entropy and partial dualization”. In: Mathematical Programming Com-
putation, pp. 1–39.

Myklebust, Tor and Levent Tunçel (2014). Interior-point algorithms for convex optimization based
on primal-dual metrics. arXiv: 1411.2129 [math.OC].

Nesterov, Yuri (2012). “Towards non-symmetric conic optimization”. In: Optimization Methods and
Software 27.4-5, pp. 893–917.

Nesterov, Yuri et al. (2018). Lectures on convex optimization. Vol. 137. Springer.
Nesterov, Yuri and Arkadi Nemirovski (1994). Interior-point polynomial algorithms in convex pro-

gramming. Studies in Applied Mathematics. Society for Industrial and Applied Mathematics.
Nesterov, Yuri and Michael J Todd (1998). “Primal-dual interior-point methods for self-scaled cones”.

In: SIAM Journal on Optimization 8.2, pp. 324–364.
Nesterov, Yuri, Michael J Todd, and Yinyu Ye (1996). Infeasible-start primal-dual methods and infea-

sibility detectors for nonlinear programming problems. Tech. rep. Cornell University Operations
Research and Industrial Engineering.

— (1997). “Self-scaled barriers and interior-point methods for convex programming”. In: Mathematics
of Operations Research 22.1, pp. 1–42.

O’Donoghue, Brendan et al. (2016). “Conic optimization via operator splitting and homogeneous
self-dual embedding”. In: Journal of Optimization Theory and Applications 169.3, pp. 1042–1068.

Orban, Dominique (2019). BenchmarkProfiles.jl. Version v0.3.3. doi: 10.5281/zenodo.4630955.
url: https://doi.org/10.5281/zenodo.4630955.

Papp, Dávid and Farid Alizadeh (2013). “Semidefinite characterization of sum-of-squares cones in
algebras”. In: SIAM Journal on Optimization 23.3, pp. 1398–1423.

— (2014). “Shape-constrained estimation using nonnegative splines”. In: Journal of Computational
and Graphical Statistics 23.1, pp. 211–231.

Papp, Dávid and Sercan Yıldız (2017). “On “A Homogeneous Interior-Point Algorithm for Non-
Symmetric Convex Conic Optimization””. In: arXiv preprint arXiv:1712.00492.

— (2019). “Sum-of-squares optimization without semidefinite programming”. In: SIAM Journal on
Optimization 29.1, pp. 822–851.

— (2020). alfonso: ALgorithm FOr Non-Symmetric Optimization. url: https://github.com/
dpapp-github/alfonso.

219

https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/9.1/pythonfusion/index.html
https://docs.mosek.com/9.1/pythonfusion/index.html
https://docs.mosek.com/latest/javaapi/index.html
https://docs.mosek.com/latest/javaapi/index.html
https://arxiv.org/abs/1411.2129
https://doi.org/10.5281/zenodo.4630955
https://doi.org/10.5281/zenodo.4630955
https://github.com/dpapp-github/alfonso
https://github.com/dpapp-github/alfonso


Papp, Dávid and Sercan Yıldız (2021). “Alfonso: Matlab package for nonsymmetric conic optimization”.
In: INFORMS Journal on Computing. url: https://doi.org/10.1287/ijoc.2021.1058.

Parrilo, Pablo A (2012). “Chapter 3: Polynomial Optimization, Sums of Squares, and Applications”.
In: Semidefinite Optimization and Convex Algebraic Geometry. SIAM, pp. 47–157. doi: 10.1137/
1.9781611972290.ch3.

Permenter, Frank, Henrik A Friberg, and Erling D Andersen (2017). “Solving conic optimization
problems via self-dual embedding and facial reduction: a unified approach”. In: SIAM Journal on
Optimization 27.3, pp. 1257–1282.

Quesada, I. and I.E. Grossmann (1992). “An LP/NLP based branch and bound algorithm for convex
MINLP optimization problems”. In: Computers & Chemical Engineering 16.10, pp. 937–947. issn:
0098-1354. doi: 10.1016/0098-1354(92)80028-8. url: https://www.sciencedirect.com/
science/article/abs/pii/0098135492800288.

Recht, Benjamin, Maryam Fazel, and Pablo A Parrilo (2010). “Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization”. In: SIAM Review 52.3, pp. 471–501.

Renegar, James (2001). A mathematical view of interior-point methods in convex optimization. SIAM.
Rockafellar, Ralph Tyrell (2015). Convex analysis. Princeton university press. doi: 10.1515/

9781400873173.
Roy, Scott and Lin Xiao (2021). “On self-concordant barriers for generalized power cones”. In:

Optimization Letters, pp. 1–14.
Sendov, Hristo S (2007). “The higher-order derivatives of spectral functions”. In: Linear algebra and

its applications 424.1, pp. 240–281. doi: 10.1016/j.laa.2006.12.013.
Serrano, Santiago Akle (Mar. 2015). “Algorithms for unsymmetric cone optimization and an im-

plementation for problems with the exponential cone”. PhD thesis. Stanford, CA: Stanford
University.

Skajaa, Anders, Erling D Andersen, and Yinyu Ye (2013). “Warmstarting the homogeneous and
self-dual interior point method for linear and conic quadratic problems”. In: Mathematical
Programming Computation, pp. 1–25.

Skajaa, Anders and Yinyu Ye (2015). “A homogeneous interior-point algorithm for nonsymmetric
convex conic optimization”. In: Mathematical Programming 150.2, pp. 391–422.

Sun, Defeng and Jie Sun (2008). “Löwner’s operator and spectral functions in Euclidean Jordan
algebras”. In: Mathematics of Operations Research 33.2, pp. 421–445. doi: 10.1287/moor.1070.
0300.

Sun, Yifan and Lieven Vandenberghe (2015). “Decomposition methods for sparse matrix nearness
problems”. In: SIAM Journal on Matrix Analysis and Applications 36.4, pp. 1691–1717.

Sutter, David et al. (2015). “Efficient approximation of quantum channel capacities”. In: IEEE
Transactions on Information Theory 62.1, pp. 578–598. doi: 10.1109/tit.2015.2503755. eprint:
1407.8202.

Tawarmalani, Mohit and Nikolaos V Sahinidis (2005). “A polyhedral branch-and-cut approach to
global optimization”. In: Mathematical programming 103.2, pp. 225–249.

220

https://doi.org/10.1287/ijoc.2021.1058
https://doi.org/10.1137/1.9781611972290.ch3
https://doi.org/10.1137/1.9781611972290.ch3
https://doi.org/10.1016/0098-1354(92)80028-8
https://www.sciencedirect.com/science/article/abs/pii/0098135492800288
https://www.sciencedirect.com/science/article/abs/pii/0098135492800288
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1016/j.laa.2006.12.013
https://doi.org/10.1287/moor.1070.0300
https://doi.org/10.1287/moor.1070.0300
https://doi.org/10.1109/tit.2015.2503755
1407.8202


Tunçel, Levent et al. (2004). “Geometry of homogeneous convex cones, duality mapping, and optimal
self-concordant barriers”. In: Mathematical programming 100.2, pp. 295–316.

Udell, Madeleine et al. (2014). “Convex optimization in Julia”. In: Proceedings of the 1st First
Workshop for High Performance Technical Computing in Dynamic Languages. IEEE Press,
pp. 18–28.

Vandenberghe, Lieven (2010). The CVXOPT linear and quadratic cone program solvers. url:
https://www.seas.ucla.edu/~vandenbe/publications/coneprog.pdf.

Vieira, Manuel V.C. (Nov. 2007). “Jordan Algebraic approach to symmetric optimization”. PhD
thesis. NL 2628 CD, Delft, The Netherlands: Faculty of Electrical Engineering, Mathematics and
Computer Science, TU Delft. isbn: 978-90-6464-189-3.

— (2016). “Derivatives of eigenvalues and Jordan frames”. In: Numerical Algebra, Control & Opti-
mization 6.2, p. 115. doi: 10.3934/naco.2016003.

Vielma, Juan Pablo (Mar. 2018). “Small and strong formulations for unions of convex sets from the
Cayley embedding”. In: Mathematical Programming. issn: 1436-4646. doi: 10.1007/s10107-018-
1258-4.

Vielma, Juan Pablo, Shabbir Ahmed, and George Nemhauser (2010). “Mixed-integer models for
nonseparable piecewise-linear optimization: Unifying framework and extensions”. In: Operations
research 58.2, pp. 303–315.

Vielma, Juan Pablo, Iain Dunning, et al. (Sept. 2017). “Extended formulations in mixed integer
conic quadratic programming”. In: Mathematical Programming Computation 9.3, pp. 369–418.
issn: 1867-2957. doi: 10.1007/s12532-016-0113-y.

Vigerske, Stefan (2018). MINLPLIB2 Library. Ed. by GAMS. url: http://www.minlplib.org.
Witzig, Jakob, Timo Berthold, and Stefan Heinz (2017). “Experiments with conflict analysis in mixed

integer programming”. In: International Conference on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. Springer, pp. 211–220. doi: 10.1007/978-
3-319-59776-8_17.

Xu, Xiaojie, Pi-Fang Hung, and Yinyu Ye (1996). “A simplified homogeneous and self-dual linear
programming algorithm and its implementation”. In: Annals of Operations Research 62.1, pp. 151–
171.

Yamashita, Makoto, Katsuki Fujisawa, and Masakazu Kojima (2003). “Implementation and evaluation
of SDPA 6.0 (semidefinite programming algorithm 6.0)”. In: Optimization Methods and Software
18.4, pp. 491–505.

Yang, Jian et al. (2016). “Nuclear norm based matrix regression with applications to face recognition
with occlusion and illumination changes”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39.1, pp. 156–171.

Zhang, Shuzhong (2004). “A new self-dual embedding method for convex programming”. In: Journal
of Global Optimization 29.4, pp. 479–496. doi: 10.1023/b:jogo.0000047915.10754.a1.

221

https://www.seas.ucla.edu/~vandenbe/publications/coneprog.pdf
https://doi.org/10.3934/naco.2016003
https://doi.org/10.1007/s10107-018-1258-4
https://doi.org/10.1007/s10107-018-1258-4
https://doi.org/10.1007/s12532-016-0113-y
http://www.minlplib.org
https://doi.org/10.1007/978-3-319-59776-8_17
https://doi.org/10.1007/978-3-319-59776-8_17
https://doi.org/10.1023/b:jogo.0000047915.10754.a1

	Introduction
	Overview of chapters
	Main sources and collaborations
	General notation

	Performance enhancements for a generic conic interior point algorithm
	Introduction
	The Skajaa-Ye algorithm
	Practical algorithmic developments
	Benchmark instances and computational testing
	Overview

	Hypatia solver
	Exotic cones and oracles
	Conic form and certificates
	General conic form
	Conic certificates
	Homogeneous self-dual embedding

	Central path following algorithm
	Central path of the homogeneous self-dual embedding
	Central path proximity
	High level algorithm
	Search directions
	Centering
	Prediction

	Stepping procedures
	Basic stepping procedure
	Less restrictive proximity
	Third order adjustments
	Curve search
	Combined directions


	Preprocessing and solving for search directions
	Efficient proximity checks
	Oracles for predefined exotic cones
	Computational testing
	Exotic conic benchmark set
	Methodology
	Results
	Less restrictive proximity
	Third order adjustments
	Curve search
	Combined directions



	Solving natural conic formulations
	Introduction
	Natural and extended formulations
	Examples and computational testing
	Efficient oracle procedures

	Cones and extended formulations
	Positive semidefinite slice cones
	Hermitian positive semidefinite cone
	Sparse positive semidefinite cone
	Polynomial weighted sum-of-squares cones

	Infinity/spectral norm cones
	Vector infinity norm cones
	Matrix spectral norm cones

	Spectral function cones
	Geometric mean and root-determinant cones
	Logarithm and log-determinant cones
	Separable spectral function cones


	Examples and computational testing
	Portfolio rebalancing
	Matrix completion
	Multi-response regression
	D-optimal experiment design
	Polynomial minimization
	Smooth density estimation
	Shape constrained regression

	Discussion of results
	Oracles for positive semidefinite slice cones
	Linear matrix inequality cone
	Polynomial weighted sum-of-squares dual cones
	Sparse positive semidefinite cone

	Oracles for infinity/spectral norm cones
	Barrier functions
	Feasibility checks
	Directional derivatives
	Inverse Hessian product


	Conic optimization with spectral functions on Euclidean Jordan algebras
	Introduction
	Overview

	Jordan algebras
	Spectral decomposition
	Peirce decomposition

	Spectral functions and derivatives
	The nonseparable case
	The separable case
	The negative log-determinant case

	Cones and barrier functions
	The homogeneous case
	The non-homogeneous case
	Dual cones
	Barrier functions and oracles

	Barrier oracles for epigraph-perspective cones
	Derivatives
	Inverse Hessian operator
	Inverse Hessian operator for the separable spectral case
	Oracles for the log-determinant case

	Matrix monotone derivative cones
	Matrix monotonicity
	Cone definition
	Derivatives of the separable spectral function
	Self-concordant barrier

	Root-determinant cones
	Cone definition
	Derivatives of root-determinant
	Self-concordant barrier
	Evaluating barrier oracles

	Examples and computational testing
	Hypatia solver
	Natural and extended formulations
	Computational methodology
	Examples and results
	Nonparametric distribution estimation
	Experiment design
	Central polynomial Gram matrix
	Classical-quantum channel capacity

	Inverse Hessian product oracle


	Outer approximation with conic certificates
	Introduction
	Branch-and-bound algorithms for mixed-integer convex optimization
	Mixed-integer conic form
	Overview

	Branch-and-bound outer approximation algorithm
	Continuous subproblems and conic duality
	Dynamic polyhedral relaxations
	Conic-certificate-based algorithm

	Polyhedral relaxation guarantees from conic certificates
	Under an exact linear programming solver
	Infeasible subproblems
	Feasible subproblems

	Under a linear programming solver with a feasibility tolerance
	Infeasible subproblems
	Feasible subproblems


	Tightening polyhedral relaxations
	Extreme ray disaggregation
	Initial fixed polyhedral relaxations
	Separation of infeasible points

	Pajarito solver and related software
	Integration with MathProgBase
	Basic algorithmic implementations
	Initializing the outer approximation model
	Iterative method
	Mixed-integer solver-driven method

	Advanced algorithmic enhancements

	Standard primitive nonpolyhedral cones
	Exponential cone
	Second order cone
	Extended formulation for the second order cone
	Positive semidefinite cone
	Second order conic cuts for the positive semidefinite cone

	Computational experiments
	Presentation of results
	Mixed-integer second order conic solver comparisons
	Comparisons of algorithmic variants
	Initial fixed cuts, certificate cuts, and separation cuts
	Extreme ray disaggregation
	Certificate-based scaling



	Formulations and oracles for mixed-integer conic optimization
	Introduction
	Solving mixed-integer conic problems
	Advanced mixed-integer conic formulations

	MOIPajarito and cone oracles
	Software architecture
	Cut oracles
	Optimization-based separation
	Extended formulations
	Computational testing setup

	Positive semidefinite slice cones
	Initial fixed cuts
	Separation cuts
	Examples for dual sparse positive semidefinite and sum-of-squares cones
	Positive semidefinite completable matrix
	Polynomial facility location
	Polynomial two-stage stochastic problem
	Polynomial regression


	Infinity/spectral norm cones
	Initial cuts
	Cut strengthening
	Separation cuts
	Examples for spectral and nuclear norm cones
	Matrix completion
	Matrix decomposition
	Matrix regression


	Spectral function cones
	Geometric mean cone
	Vector separable spectral function cones
	Matrix spectral function cones
	Examples for spectral function cones
	Knapsack problem with convex objective
	Sparse regression with prior constraints
	Experiment design
	Inverse covariance estimation


	Advanced mixed-integer conic formulations
	Tight conic formulations for disjunctions of convex constraints
	Piecewise linear relaxations of nonconvex equality constraints
	Homogenized piecewise linear formulations
	Mixed-integer conic reformulations
	Examples for disjunctive formulations and nonconvex relaxations
	Ball packing
	Modular design with convex constraints
	Modular design with nonconvex constraints



	Bibliography

