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Abstract

The United Nations World Food Programme (WFP) distributed over 3.6 mil-
lion tonnes of food to nearly 100 million people in 75 countries in 2011. After
successful trials of a new class of specialized nutrition products (SNPs) for the
treatment and prevention of acute malnutrition, the organization is considering
how to expand the distribution of these products. The new challenge for the
WFP is that these SNPs have limited shelf-lives and need to be refrigerated if
stored at warehouses. A two-stage, scenario-based stochastic program is for-
mulated for the fixed-charge network problem of deciding which warehouses to
refrigerate and how to route perishable commodities given uncertain demands
and network parameters. A Benders decomposition separates the first stage re-
frigeration problem and the second stage commodity routing problems for each
scenario. Following a re-definition of path variables, the second stage problems
are solved using a cutting planes procedure and a novel multilabel constrained
shortest path pricing algorithm that exploits the problem structure. Computa-
tional testing demonstrates that for a realistic problem size of 75 warehouses, 108
time periods, and nearly 200 demand orders in four scenarios, an optimal solu-
tion for the refrigeration and commodity routing problem is typically found in
around 5 minutes. Future work at the WFP headquarters will involve developing
a robust decision tool for operational and tactical level planning on the supply
chain for SNPs.
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1 Introduction

1.1 Motivation

Hunger is the greatest risk to human health worldwide. According to the Food and Agri-
culture Organization of the United Nations (FAO), 870 million people worldwide are under-
nourished and do not have enough food to be healthy and lead an active life. 98 per cent of
these people live in developing countries [23]. Under-nourishment causes malnutrition, which
the World Health Organization and the United Nations Standing Committee on Nutrition
is the largest contributor to disease [38]. Malnutrition at an early age results in redardation
of mental and physical development, and more than 147 million pre-schoolers in developing
countries are affected by stunted growth [38]. While the number of chronically hungry peo-
ple declined in the 1980s and the first half of the 1990s, it has risen steadily over the last
two decades [23]. Figure 1 illustrates the proportion of the population undernourished in
different countries.

Figure 1: Percentage of Population Undernourished by Country

source: [32]

Organizations such as the FAO, the World Food Programme (WFP), and the United Nations
Children’s Fund (UNICEF) typically work in unison and with smaller non-governmental
organizations to deliver specialized products to treat acute malnutrition. Since need outstrips
supply, treatment for children and pregnant or lactating women is prioritized in order to help
prevent irreversible developmental disabilities [38]. The global economic downturn and the
high and fluctuating food prices since 2008 have meant that international organizations
combating hunger have had to increase their efforts and their budgets as an adequate intake
of food became too costly for more people. Figure 2 illustrates the trend in the price of a
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standard food basket providing essential macro- and micro-nutrients. With world food prices
expected to reach an all-time high in early 2013 and continue rising thereafter, international
organizations such as the WFP are exploring new ways to increase their ability to deliver
large quantities of products that are more effective at preventing and treating malnutrition
[50].

Figure 2: World Monthly Food Price Index Since 1990

source: [29]

The WFP transports more food annually than any other international organization, through
a vast supply chain including 30 ships, 70 planes and helicopters, and 5000 trucks [13]. Ship-
ping is the backbone of the WFP’s supply chain, with some 90 percent of its food transported
by sea [39]. The WFP partners with around 3000 Non-Governmental Organizations (NGOs),
most of which are grassroots organizations with local knowledge and connections, to ensure
food is delivered efficiently to the intended beneficiaries. These NGO partners typically re-
ceive the goods at final delivery points (FDPs), which are local or regional warehouses at the
end of the WFP’s supply chain. In 2011, the WFP was able to serve 99.1 million people in
75 countries, providing over 3.6 million tonnes of food. 11 million children received special
nutritional support from the WFP.

Since it was first created by the United Nations in 1963, the WFP has primarily focused
on providing a basket of food staples including oil, sugar, salt, and one or more cereals or
pulses. However in an effort to prevent and treat malnutrition particularly among children,
the WFP has focused more over the past few decades on increasing the quantity of ‘blended
foods’ or specialized nutrition products (SNPs) it distributes. Figure 3 illustrates the relative
quantities of foods procured by the WFP in 2010. SNPs are manufactured and typically
provide a broad set of macro- and micro-nutrients needed to avoid malnutrition. Over the
past few decades, the most widely used categories of SNPs were fortified blended foods (e.g.
Supercereal), micronutrient powders, and high-energy biscuits and compressed food bars
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[42].

Figure 3: WFP Procurement in 2010

source: [? ]

In recent years, a relatively new category of SNP has been shown to hold great promise as
an efficient and effective way to prevent and treat malnutrition in children or pregant or lac-
tating mothers. Lipid Based Nutrient Supplements (LNS), also called Ready-to-Use Foods
(RUFs), were first conceived of in 1996 when a French company called Nutriset and the
Institut de Recherche pour le Développement (IRD) developed the now-famous Plumpy’Nut
[35]. Nutriset commercialized the product as an alternative to the therapeutic milks that
medical teams such as Médecins Sans Frontières (MSF) administered to malnourished chil-
dren and mothers. These reconstituted milks required drinking water to be available and had
extremely short shelf-lives, so treatment often required hospitalization, severely limiting the
number of people that could be treated. On the other hand, Plumpy’Nut is a peanut paste
fortified with milk powder, vegetable fats, sugar, and vitamins and other micronutrients and
may be consumed at home directly from the packet, without preparation [35].

Between 1997 and 2001, a series of field trials and studies demonstrated that Plumpy’Nut is
an effective and efficient way to combat malnutrition. As organizations such as MSF began to
use LNS products, Nutriset increased its production [35]. However, it took nearly a decade for
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larger organizations such as the WFP to begin to acknowledge the advantages of LNSs over
the traditional SNPs such as Supercereal, which requires preparation and drinking water, or
micronutrient powders, which are supposed to be added to other foods before consumption
[42]. In 2005, MSF responded to a food crisis in Niger by treating over 60000 children with
Plumpy’Nut and achieving a recovery rate of over 90 percent, demonstrating the effectiveness
of LNSs on a large scale [35]. In the years that followed, the WFP began to procure LNSs
from Nutriset, and recently the Logistics Development Unit (LDU) of the WFP has been
considering how to significantly expand the distribution of these products.

Figure 4: WFP Procurement of SNPs, 2009-2011

source: [43]

Figure 4 shows the recent trend in increasing WFP procurement of new SNPs [43]. Plumpy’Doz
and Plumpy’Sup are produced by Nutriset, but unlike Plumpy’Nut, they are formulated for
preventing malnutrition rather than treating malnutrition, and Nutributter by Nutriset is
essentially Plumpy’Nut. ‘RUSF Pakistan’ (AchaMum or WawaMum, produced in Pakistan)
refers to a new set of LNS products similar to the Plumpy supplements but chickpea based
rather than peanut based. The Supercereal Plus products are a variant of the traditional
Supercereals and are not lipid-based. More information about LNS and Supercereal products
is given in Figure 5.

The major challenge of using SNPs to combat malnutrition is that the products have limited
shelf-lives. The shelf-life of a product depends heavily on the temperature and humidity
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Figure 5: LNS Products Commonly Distributed by the WFP

source: [41]

conditions that it is stored at. Where traditional food staple commodities such as cereals and
pulses might be stored for several years in dry conditions, studies analyzing the nutritional
content of SNPs over time have shown that if stored at temperatures in excess of 30 −
35oC, the products degrade rapidly, some losing important nutrients or separating into oil
and solid components in less than six months [44]. A team within the WFP’s LDU has
been collaborating with academia, partner organizations, and SNP suppliers to develop a
comprehensive set of standards for all organizations to store and distribute SNPs. A major
focus of this working group is how to prevent the degradation of SNPs before and after
delivery, so as to maximize their nutritional benefit and avoid possible spoilage of the goods
due to pathogens such as Cronobacter sakazakii, which has in several recent cases rendered
batches of LNS products too dangerous for consumption [34].

A set of guidelines for temperature and humidity control at WFP and partner organization
warehouses is published on the WFP’s Food Quality Control website (foodquality.wfp.
org). For LNSs and other SNPs specifically, the WFP released a document in March 2012,
during the Sahel food crisis, describing rapid solutions for modifying warehouses in order to
decrease heat and humidity in preparation for the storage of much-needed SNPs [40].

While refrigeration of a warehouse or a compartment within the warehouse provides the ideal
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dry and cool conditions for optimal preservation of SNPs, electricity is often unavailable
or only intermittently available at smaller, local warehouses. Larger warehouses serving
whole regions or countries are typically located where roads and other infrastructure is
more reliable and electricity is available. Refrigeration is more likely to be feasible at one
of these warehouses, which also tend to hold larger quantities of food products and store
these products in inventory for long periods of time [40]. The regional level warehouses
(extended delivery points, or EDPs) typically distribute to local warehouses (final delivery
points, FDPs) only when a need arises at the FDP. If a local NGO served by a particular
warehouse places an order for a quantity of some good, units of the good are routed on
the distribution network for delivery to the NGO at the warehouse. The economies of scale
of refrigerating a larger space for a greater quantity of perishable products such as LNSs
in medium-term storage makes refrigerating regional-level warehouses more valuable as the
WFP rapidly expands the distribution of such products.

By pre-positioning food products at warehouses, the WFP and partner organizations can
respond more rapidly to emergencies that cause hunger. Coordination in the delivery of
food resources is particularly challenging and crucial in the aftermath of disasters. The UN
Logistics Cluster, led by the World Food Programme, is a group of humanitarian organiza-
tions that coordinate and share information to improve the efficiency of logistics responses
to humanitarian emergencies [14]. The Logistics Cluster manages the UN Humanitarian
Response Depots, five large warehouses displayed in Figure 6 where food and other emer-
gency relief products are stockpiled and can be flown to any location within one or two days.
The WFP plans to increase the stockpiles of SNPs at the UNHRDs, increasing the benefit
of creating refrigerated sections of these warehouses for medium-term storage of perishable
products.

1.2 Problem Statement

In seeking to expand the distribution of SNPs, particularly LNSs such as the peanut or
chickpea based fortified pastes, the WFP is faced with the challenge of how to ensure these
products do not lose significant nutritional value or succumb to pathogens before consump-
tion by beneficiaries. Since refrigeration better preserves these products, the WFP ought to
consider installing costly refrigeration capacity at its country or regional level warehouses, for
which the food commodity storage standard is currently adequate ventilation and security
only. Following the refrigeration of warehouses, the WFP must route units of goods through
the network from suppliers to warehouses to satisfy orders of units requested by WFP field
teams or partner organizations. Each order corresponds to a quantity of a particular good
that is requested to arrive at a particular time and warehouse location.

The need for SNPs is reflected by the orders that arise on the network. Need has a pre-
dictable component, for example the need for nutritional supplementation during seasonal
and ongoing famines, and an unpredictable component, due to unexpected events such as
natural disasters, political strife, and food price fluctuations. Furthermore, the WFP does
not have full information about the activities of its partner organizations. As such, the WFP
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Figure 6: United Nations Humanitarian Response Depots, Managed by the WFP

source: [37]

does not know what orders and associated quantities demanded will arise on the network
in the future. There may also be uncertaintly about the costs, capacities, and atmospheric
conditions on transport routes over time. When making refrigeration decisions, the WFP
therefore ought to model orders and edge parameters stochastically.

Given the costs of distribution, limitations on the rate of production by suppliers, and
capacities on transport and inventory flows, the WFP is rarely able to satisfy the full quantity
of demand for every order. In this case, the organization ought to prioritize orders that it
considers more crucial, for example, where the risk of permanent damage to the mental and
physical health of babies and young children is high. Furthermore, due to bottlenecks in the
supply chain, the WFP will not always be able to deliver goods on-time. For many orders,
late deliveries are still valuable compared to no delivery at all, so the WFP must allow for
demand to be satisfied late. In the case that some orders cannot be satisfied on-time, the
WFP ought to avoid late deliveries for orders for which on-time delivery is very important,
and it should be more flexible with delivery times for orders for which lateness is more
acceptable.

An optimization model is formulated for the tactical and operational level planning problems
that the WFP faces in expanding the distribution of SNPs. The decisions, objectives and
constraints for the WFP’s optimization problem are outlined below.

The decisions of the WFP are:

1. binary refrigeration decisions on warehouses: which warehouses to install costly refrig-
eration capacity at before flow routing takes place
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2. flow decisions on paths: for each order, how much flow to route on paths that satisfy
demand for the order (on-time or late)

3. the quantity of unmet demand for each order

The goals of the WFP are to:

1. minimize the combined cost of refrigerating warehouses, purchasing units, transporting
units, and storing units at warehouses

2. minimize the lateness of delivery, or the time between when an order is requested to
arrive and the time when it actually arrives

3. minimize unmet demand and where demand outstrips distribution capacity, prioritize
meeting demand for the most important orders

The WFP is constrained by:

1. shelf-lives of the different goods: when a unit is delivered to satisfy an order, it must
have a sufficient amount of remaining shelf-life

2. flow capacity of transport routes per unit time: the finite number and capacity of ships,
vehicles, and planes limits the quantity that can be transported on each route over a
period of time

3. inventory capacity of warehouses: warehouses have limited space for storing goods

4. production capacity of suppliers: suppliers of these manufactured food products are
subject to production constraints (except in the long run)

Note that the problem cannot be effectively decomposed into smaller regional subproblems.
The WFP operates in 75 countries, but globally there are only several producers of SNPs,
and by far the largest of these producers (Nutriset, located in France) holds and enforces a
patent on its products. Since global supply is quite limited over the short and medium term
time horizons, the WFP’s planning problem ought to be solved at the global scale.

The problem facing the WFP can be broken down into subproblems according to the time
horizons of the different decisions. Figure 7 illustrates the operational (short-term), tactical
(medium-term) and strategic (long-term) planning levels that the WFP faces in expanding
its distribution of SNPs. The refrigeration and commodity routing problem described above
emcompasses only the operational and tactical levels within the dashed line in Figure 7. The
strategic level decisions are simply an example of the network design decisions that might
occur at the long-term planning level, such as what locations to open up new warehouses at,
what transport routes to construct or secure, and how many ships or vehicles are needed.
At the tactical level, information about likely future demand and the costs of refrigerating
warehouses, along with information garnered during the process of making routing decisions,
is used to decide which of the active warehouses should be refrigerated. At the operational
level, routing decisions are made on the fixed network given the fixed refrigeration decisions
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affecting goods kept in inventory, the actual demand, and the costs and constraints imposed
by suppliers of goods.

Figure 7: The Planning Levels of a Supply Chain for Perishable Commodities
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1.3 Optimization Models and Solution Methods

The WFP’s optimization problem, defined by the decisions, objectives, and constraints listed
above, is referred to as the refrigeration and commodity routing (RCR) problem. It is
formulated as a two-stage stochastic program in which refrigeration decisions are made in the
first stage (the 1R problem) and flow routing and unmet demand decisions are made in the
second stage (the 2CR problem). In the first stage, the orders are unknown, but a distribution
over possible future scenarios is available. In the second stage, after refrigeration decisions
are fixed, information is revealed and the true scenario becomes known, so a deterministic
problem can be solved over the second stage time-horizon. One 2CR model instance is set
up for each scenario.

The 2CR model is formulated as a path-based multicommodity flow problem with side con-
straints on a time-expanded network of suppliers, warehouses, transport edges and inventory
edges. If a warehouse is selected for costly refrigeration installation, in the second stage units
flowing on an inventory edge corresponding to the warehouse will use up a smaller fraction
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of their allowed shelf-life than if the warehouse was not refrigerated. An optimal solution
to a RCR model cannot be found by solving the 1R and 2CR problems sequentially, since
routing information is needed for the refrigeration decisions and vice versa. Since the RCR
model is extremely large for a distribution network approaching the size of the WFP’s, both
decomposition and large-scale optimization methods must be implemented.

A path in the second stage problem is re-defined as an ordered list of pairs, where the first
element of each pair is an edge in the network and the second is an indicator parameter for
whether the edge is an inventory edge associated with a warehouse that the path assumes
to be refrigerated. Given a current solution vector of refrigeration decisions, any paths that
require a warehouse to be refrigerated are impossible paths if the warehouse is not refrigerated
in the solution. This approach allows the shelf-life constraints on paths to be made implicit
in the definition of paths, since the shelf-life expended on a path no longer depends on the
refrigeration decisions. Without this variable re-definition, the second stage problem cannot
be formulated as a continuous linear program and therefore cannot be decomposed effectively
for exact large-scale optimization algorithms.

I use Benders decomposition to separate the first and second stage problems in RCR. The
Benders master problem corresponds to 1R and one Benders subproblem is created for the
2CR instance for each possible scenario. A solution to the Benders master problem at
some iteration of the decomposition algorithm provides a fixed vector of binary refrigeration
decisions to the Benders subproblems. Taking the refrigeration decisions as a vector of
parameters, one or more of these subproblems is then solved, and dual information from
the optimal solution is passed back to the master problem in the form of a Benders cutting
plane. This iterative process eventually reaches an optimal solution for RCR. The flow
of information between the first and second stage models is illustrated in Figure 7. In
one Benders iteration, the tactical level problem 1R passes refrigeration decisions to an
operational level routing problem 2CR, which takes these decisions as fixed and passes back
information on the value of refrigerating each warehouse.

Even after the Benders decomposition, each instance of the 2CR is too large to solve for
a graph approaching the size of the WFP’s time-expanded supply chain network. This
is because the number of paths is exponential in the size of the network, and increases
particularly rapidly following the re-definition of paths. A cutting planes algorithm is used
to solve the dual problems of the second stage problems. Violating cuts, corresponding to
paths, are generated by a constrained shortest path algorithm that uses dual information
from the solution to the second stage problem instance to generate negative reduced cost
paths that do not exceed the maximum allowed shelf-life expenditures.

The constrained shortest path algorithm is a highly customized multilabel shortest path
algorithm that only stores labels that are nondominated with respect to reduced cost and
remaining shelf-life. No labels with nonnegative reduced costs or negative remaining shelf-
lives are ever stored. The algorithm adds up to two labels when it ‘pushes’ label information
over an inventory edge, one that assumes the warehouse is refrigerated and the other that
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assumes it is nonrefrigerated. Although the algorithm is designed to thoroughly exploit the
special structure of the directed acyclic graph, the size of this graph makes the multilabel
algorithm very computationally expensive, so bounding ideas are also used to discard labels
corresponding to sub-paths that cannot be extended into feasible paths. Since the algo-
rithm will always generate at least one lowest reduced cost feasible path, the cutting planes
procedure will eventually return an optimal solution for an instance of the 2CR model.

1.4 Literature Review and Contributions

1.4.1 Humanitarian Logistics and Supply Chains

Thomas and Mizushima [47] defines the field of humanitarian logistics as “the process of
planning, implementing and controlling the efficient, cost-effective flow and storage of goods
and materials, as well as related information, from the point of origin to the point of con-
sumption for the purpose of meeting the end beneficiary’s requirements”. This definition
was adopted by the WFP and Médecins Sans Frontières. The focus of humanitarian logistics
on the needs of the end beneficiary constrasts with the goals of commercial logistics to have
“the right item in the right quantity at the right time at the right place for the right price
in the right condition to the right customer” [13]. Although the WFP is a donor funded
organization without the commercial drive for profit, funding is scarce and the costs of pur-
chasing, transporting and storing LNSs and refrigerating warehouses are far from trivial for
the organization. The objective of the RCR model is therefore a cost minimization objective
where the humanitarian concerns of minimizing unmet demand and minimizing the lateness
of deliveries enter as penalization terms.

The tutorial by Celik et al. [13] offers a thorough literature review of recent operations re-
search applications in the logistics of humanitarian disasters. The authors distinguish the
relevant literature according to the four phases of disasters: mitigation, preparedness, re-
sponse, and recovery. The WFP’s RCR problem falls primarily under the response and
recovery phases during which there is a need for SNPs for the prevention and treatment of
acute malnutrition. However, the WFP does not exclusively distribute in response to disas-
ters; most of its operations are focused on combating a chronic lack of adequate nutrition.
But because of the very rapid onset of urgent need, disasters create significant challenges for
the WFP and its partners.

The tutorial also discusses several papers addressing the distribution of aid during the re-
sponse stage following a disaster. A model for commodity and vehicle routing and the
location of temporary facilities in Afshar and Haghani [1] minimizes the unmet demand for
different types of supplies needed during the response phase of disasters. Salas et al. [45]
describes a stochastic program that minimizes cost and food shortages at a shelter by op-
timizing the order quantities over time. These models and others that appear in Berkoune
et al. [10], Angelis et al. [4], Liberatore et al. [31], and Hentenryck et al. [27] have some
methodological similarities to the WFP’s RCR problem, such as stochastic network param-
eters and demand, and objectives that weight both cost and demand satisfaction. However,
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the recent humanitarian logistics literature does not consider in depth the problem of routing
perishable goods and making refrigeration decisions on the network.

In an unpublished design project by Alvarenga et al. [3], a shipment scheduling tool was
developed in order to improve the WFP’s food product routing decisions in the Horn of
Africa. The tool consists of a port simulation component and an inland transport corridor
optimization component. Donations of food commodities arrive at the port on ships that are
queued for unloading. After goods have been unloaded at a port, the cargo is loaded onto
vehicles or stored at a port warehouse for later transportation. Based on the port simulations,
the tool selects the best port of entry for each shipment. After these decisions are made,
an optimization model is used to select land transportation corridors for the shipments on
a time-expanded network of warehouses and routes. This capacitated minimum cost flow
problem on the time-expanded network is similar to the second stage routing problem of the
WFP’s RCR problem, except that no shelf-life constraints are imposed and thus a simpler
edge formulation is used for the multicommodity flow problem. The tool is particularly
useful for operational level planning within single regions, where the goods to be routed are
the traditional food aid commodities such as cereals and pulses. Unlike the RCR problem,
it does not make tactical or strategic level decisions that affect the network, and it does not
take account of the limited global supply from a small number of producers. It is therefore
less suitable for routing the SNPs that are the focus of the WFP’s RCR problem.

The RCR problem and its application to supply chain planning for the World Food Pro-
gramme is a novel contribution to the field of humanitarian logistics. The development of
decision support tools based on this paper will begin in early 2013, and it is hoped that
this work will add to the rapidly-growing literature offering operations research solutions to
humanitarian issues.

1.4.2 Benders Decomposition and Fixed-Charge Network Problems

The formulation of the RCR model as a two-stage stochastic model that is decomposed in
a Benders framework is standard. Benders [9] first described the decomposition algorithm,
which is based on the ideas of partition and delayed constraint generation. The technique
was used in the seminal paper Geoffrion and Graves [26] on multicommodity distribution
network design, and in extensions to this work to logistics network design in Cordeau et al.
[17]. Tsitsiklis [49] demonstrates how Benders decomposition is can be used to solve two-
stage stochastic linear programs. In this broad class of problems, first stage decisions are
fixed in the second stage and the optimality of the second stage decisions depends on the
first stage decisions.

Benders decomposition can be useful even for deterministic problems if there exists a set of
hard linking constraints and a natural separation of variables. Agarwal and Ergun [2] uses
Benders decomposition to solve the simultaneous ship-scheduling and cargo-routing (SSSCR)
problem on a time-expanded network for liner shipping. This is a deterministic model and
the Benders algorithm is used simply to separate the tactical and operational level problems
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in order to arrive at a tractable solution procedure. At the tactical level, corresponding to
the first stage Benders master problem, a liner company or alliance selects a set of shipping
cycles on which to schedule its ships. At the operational level, corresponding to the single
second stage Benders subproblem, the decision-maker routes cargo on the ships to satisfy a
set of fixed, known demands at ports.

Whereas the computational difficulty of the decomposed RCR problem lies in the second
stage 2CR models, the SSSCR has a difficult first stage model. This ship-scheduling model
has a binary variable for each cycle in a large time-expanded network of ports, so a column
generation approach is used for the integer-relaxed model to generate good cycles between
each solve. The relaxation of integrality means that the algorithms proposed for the SSSCR
do not guarantee an optimal solution. For the RCR, however, an optimal solution is guar-
anteed because the first stage 1R model has a relatively small number of binary variables
and can be solved to optimality quickly without the need for column generation and integer-
relaxation.

An example of a stochastic two-stage problem solved with (generalized) Benders decompo-
sition appears in Tsamasphyrou et al. [48]. This paper considers the power systems trans-
mission design problem, in which the goal is to establish a minimum cost set of transmission
lines to allow a single commodity, electricity, to flow from generation plants to consumer
centers. On a network of 24 nodes and 40 lines, the authors generate up to 2000 scenarios
with varying power demands and availabilities and use Benders decomposition to generate
cuts. The approach is interesting because the authors consider adding different numbers
of Benders cuts between each Benders master problem iteration. They find that the best
approach is to divide the scenarios into a number of sets and generate one cut for each set
of scenarios for each iteration of the Benders algorithm. This reduces the time taken for the
overall algorithm by balancing the computation time needed for the Benders master problem
and the many Benders subproblems. A similar analysis is performed with the RCR Benders
algorithm in the computational testing section of this paper.

The SSSCR problem, the power transmission design problem, and the RCR problem are all
network design problems. General network design problems and applications are surveyed in
Magnanti and Wong [33], Gendron et al. [25], Crainic [19], and Costa [18]. More specifically,
the RCR problem is an example of the capacitated fixed-charge network design problem.
Costa [18] characterises this class of network problems as having a set of capacitated edges
that may only be traversed if a fixed cost is paid. Fixed-charge network problems are known
to be NP-hard [18], so the RCR problem is NP-hard. In the RCR problem, paying a fixed cost
to refrigerate a warehouse effectively opens up new inventory edges at the warehouse with
smaller shelf-life expenditures, allowing a potentially larger set of feasible routing decisions
to be made on the network. Fixed-charge network design problems have a natural separation
of variables that make the Benders decomposition approach suitable. Variables representing
the opening of links are solved in the master problem, and flow routing variables are solved
for in the subproblem. Thus at each iteration of the algorithm, the master solution gives a
tentative network on which the subproblem routes commodities optimally [18].
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Typical applications of the capacitated fixed-charge network design problem are in telecom-
munications networks [25] and electric power transmission networks [11]. Applications of the
general fixed-charge network design problem (which may be uncapacitated) often arise in
the airline and trucking industries. Armacost et al. [5] describes a model for express package
delivery companies such as UPS to establish routes and assign aircraft to the routes at the
same time as making routing decisions for packages. This paper is quite unique in that it
uses the idea of composite variables to remove the flow decisions and cast the formulation
purely in terms of the network design decisions. This result is that the LP relaxations of the
composite formulation give stronger lower bounds, speeding up the solution procedure for
the MIP. This approach is somewhat similar to the re-definition of path flow variables used
in the formulation for the RCR problem. The issue of a large number of variables in these
models is overcome by solving a restricted problem using a column generation or cutting
planes procedure.

1.4.3 Resource-Constrained Shortest-Path Algorithms

For a second stage model corresponding to a particular scenario in the RCR problem, the
cutting planes procedure that is performed on the dual of the 2CR uses a pricing subproblem
to generate paths corresponding to violated cuts. This pricing subproblem is solved using a
resource constrained shortest-path algorithm (RCSPP) to ensure that only negative reduced
cost paths that do not exceed the shelf-life expenditure constraints are generated. Irnich and
Desaulniers [30] describe the general shortest path problem with resource constraints and
propose a generic formulation for this class of problems. According to Garey and Johnson
[24], even for an acyclic network, positive edge costs, and a single resource constraint -
which characterizes pricing subproblem in the RCR formulation - the RCSPP is known to
be NP-hard.

RCSPP and its variants are often encountered in column generation formulations for many
classes of problems including the vehicle routing problem and its variants, the fleet as-
signment model, train scheduling and line planning, and network bandwidth design [22].
Cordeau et al. [16] describes various types of vehicle routing problems and solution methods,
and Cordeau et al. [15], Holmberg and Yuan [28], and Sandhu and Klabjan [46] offer recent
examples of constrained shortest-path based column generation formulations in transporta-
tion and network design problems. In Barnhart et al. [7], the short-haul aircraft rotation
problem is solved via column generation of paths in the flight connection network, in which
flights are represented as nodes, where paths are constrained so that the total flying time
is no longer than that allowed for an aircraft between maintenance stops. Boland et al.
[12] develops a label setting algorithm for the elementary resource-constrained shortest path
problem, which finds the least cost path with no repeated nodes between two specified nodes
subject to the constraint that each resource type consumed by arcs in the path does not
exceed its limit. In most of these examples, like for the RCR problem, the motivation for
solving a variant of the RCSPP problem is its usefulness as a subproblem for a column
generation or cutting planes procedure.
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A common way to solve the RCSPP is dynamic programming, which is the approach used in
the RCR solution framework. The core components of dynamic programming approaches to
solving constrained shortest path problems have not changed significantly since the seminal
work of Desrochers [20]. Engineer et al. [22] use a dynamic programming algorithm to
solve an RCSPP as part of a column generation approach for formulations involving very
large networks and many resource constraints. The authors give the example of the Dial-a-
Flight problem, which arises in the context of an on-demand passenger air transport service
operating without a fixed schedule. In this problem, passengers must be assigned and jets
must be routed simultaneously, and this creates a set of resource constraints for jet and
passenger itineraries that grows rapidly with the number of airports and passengers.

The dynamic programming procedure in Engineer et al. [22] uses a domination scheme for
paths, and is therefore similar in some respects to the RCSPP algorithm that is used to
solve the RCR problem. Desrochers and Soumis [21] gives an overview of multilabel shortest
path algorithms and the idea of path dominance. Barnhart et al. [6] and Barnhart et al.
[8] describe the use of multilabel shortest path algorithms as column generation pricing
subproblems for the the crew pairing problem. In this airline crew scheduling context, path
dominance is exploited to avoid examining all paths, which correspond to pairings in the crew
pairing problem. A similar path dominance approach is used within the multilabel shortest
path algorithm to solve the RCR problem without enumerating paths in the distribution
network.

Irnich and Desaulniers [30] describes dynamic programming algorithms for the RCSPP.
Starting from the trivial path (src), these algorithms systematically build new paths by
extending paths one-by-one along all feasible out-edges. The efficiency of an algorithm
depends on the ability to detect and discard paths that are not useful for building a Pareto-
optimal set of paths. The dominance rules for paths enable the identification of such non-
useful paths. Irnich and Desaulniers [30] outlines how paths are encoded by labels (Orlin [36]
gives a comprehensive overview of labeling algorithms for dynamic programming approaches,
but does not cover multilabel algorithms). Paths sharing a common prefix are represented
with a single chain of labels. Each label typically stores a representation of the resource
vector.

For the RCR problem, the two resources are reduced cost and shelf-life remaining. The
dominance rules for the mutlilabel algorithm identify as dominated a path to a particular
node that is no better than another path to that node in terms of both resources and strictly
worse for at least one resource. Such dominated paths are discarded immediately as non-
useful for building the set of nondominated paths. Since the path pricing subproblem for
RCR requires negative reduced cost paths with nonnegative remaining shelf-lives, two path
feasibility conditions are checked in addition to the dominance conditions every time a path
is extended in the multilabel algorithm.

What is novel about the path pricing subproblem used to solve the RCR problem is the
combination of custom techniques to make the multilabel constrained shortest path algorithm
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more efficient. Tighter bounding ideas that do not significantly increase computation time are
used to discard non-useful labels before they become dominated or infeasible. An extreme
breadth-first search approach utilizes a property of the time-expanded network to avoid
prematurely extending paths that are likely to become dominated is also implemented. These
ideas, which rely heavily on the network and model structure, were not seen in the literature
on multilabel constrained shortest path subproblems for column generation procedures.
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2 A Mathematical Programming Formulation

Section 2.5 presents a mathematical formulation for the RCR problem, along with sum-
maries of the model parameters, sets and variables in Tables 1 to 3. First, the directed
graph G = 〈N , E〉 representing the time-expanded distribution network is introduced in Sec-
tion 2.1, followed by a description of the notation for orders, paths, and stochastic scenarios
in Sections 2.2 to 2.4.

2.1 Graph Representation of the Distribution Network

Let T be the set of discrete time steps in the decision maker’s time horizon. A period is one
of |T | − 1 equal intervals of time spanning the horizon. The granularity of the model with
respect to time is arbitrary - a period might correspond to 6 hours, a day, or a week - but
it impacts the size of the model. An important consideration for choosing the period length
is the range of shelf-lives of the perishable goods. If some goods perish in a matter or days
or weeks then the length of a period might be one day or a fraction of a day. Let G be the
set of good types that the decision-maker may distribute, and let lg ∈ R+ be the shelf-life
of g ∈ G. lg then represents the number of periods that a newly produced unit of g may
be stored at ambient conditions before it is judged to be expired. All units purchased from
suppliers are assumed to be newly produced.

Let S be the set of suppliers. A supplier s ∈ S can manufacture goods Gs ∈ G. For each
time step t ∈ T , s is subject to an aggregate production capacity constraint for all goods
and individual production capacity constraints for each g ∈ Gs. An aggregate production
constraint may bind if a supplier’s food processing machines may be used to produce different
goods and the total output of the machines is limiting. An individual capacity constraint for
good g may bind if machines are specialized or if an ingredient only required for g is scarce.
These production constraints are imposed by assigning edge flow capacities to two types of
supply edges in G. After adding a super-source node src and a set of time-expanded suppliers
nodes S×T to N , aggregate supply edges (src, (s, t)) ∀s ∈ S, t ∈ T are added to E . The flow
capacity m(src,(s,t)) on edge (src, (s, t)) is then equal to the aggregate production capacity for
supplier s at time t. To represent the individual good production capacity constraints, a set
of good-supplier nodes and a set of individual good production edges are added to G. For
each time-expanded supplier node (s, t), nodes (g, s, t) ∀g ∈ Gs are added to N and edges
((s, t), (g, s, t)) ∀g ∈ Gs are added to E . The flow capacity m((s,t),(g,s,t)) on each individual
good production edge is then equal to the individual good production capacity for good g
by supplier s at t. Also associated with each edge ((s, t), (g, s, t)) is a flow cost parameter
c((s,t),(g,s,t)) to account for the full cost of purchasing a unit of good g from supplier s at time
t.

After a unit is purchased, the decision-maker routes it from the supplier to a particular
warehouse through a network of roads, railways, shipping routes, flight legs, and intermediate
warehouses. The set of warehouses W is time-expanded into the set of nodes W × T ⊂ N .
Since any location where the decision maker may choose to store goods may be modeled as
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a warehouse, even if the decision-maker does not have the option to refrigerate the facility
(for example, a port or partner organization’s warehouse), no further nodes are added to N .
For a transport route from supplier s ∈ S to warehouse w ∈ W , if ttrav ∈ Z+ is the discrete
number of periods needed for a vehicle to transport units on the route, the set of edges
{((g, s, t), (w, t′)) : g ∈ Gs, t ∈ T , t′ ∈ T , t′ − t = ttrav} is added to E . A unit traversing the
transport edge ((g, s, t), (w, t′)) therefore leaves supplier s at time t and arrives at warehouse
w at time t′, where the number of periods taken to traverse the edge t′−t is equal to the time
needed to traverse the corresponding route from s to w in the distribution network. Similarly,
for a route from a warehouse w ∈ W to a warehouse w′ ∈ W\w that takes ttrav ∈ Z+ periods
of transport, the transport edges {((w, t), (w′, t′)) : t ∈ T , t′ ∈ T , t′ − t = ttrav} are added
to E . Note that in order to simplify the process of constructing G, it was assumed that the
discrete traversal time for each route remains constant over time. This assumption should
be relaxed for routes that have changing traversal times, for example a road that floods
seasonally or becomes congested on certain days of the week. For a flight or shipping leg,
a transport edge should not be created from a node at time step t if no plane or ship is
scheduled to leave the corresponding location at time t.

Since transporting units is costly, each transport edge e is associated with a flow cost pa-
rameter ce ∈ R+. Let me ∈ R+ be the flow capacity parameter equal to the maximum
quantity of goods that can be routed during a single period on the corresponding transport
route, assumed to be finite. Let le ∈ R+ be the shelf-life expended on the edge, equal to
amount of shelf-life lost during transport on the corresponding route. In general, le is not
equal to the discrete traversal time of the route because the rate of shelf-life loss depends on
the temperature and humidity conditions experienced by units during transport. For exam-
ple, if edge e corresponds to transport by refrigerated truck on a particular road, le will be
relatively small compared to le′ for an edge e′ corresponding to transport by nonrefrigerated
truck on the same road. As implied by this example, in cases where both refrigerated and
nonrefrigerated transport options exist for some transport routes, G is a multigraph. To
simplify the construction of G, the parameters ce, me, and le are assumed to be constant
for all edges e corresponding to a particular transport route and mode. This assumption
is easily relaxed in the case of periodic or more generally time-dependent transport costs,
capacities, and shelf-life expenditures.

The inventory edges at warehouses are the only remaining edge type in E . Inventory edges
are crucial in the RCR model because of the effect of warehouse refrigeration decisions on
the storage conditions for inventoried units. The set {((w, t), (w, t + 1)) : w ∈ W , t ∈
{0, 1, ..., |T | − 1}} consists of all edges from a time-expanded warehouse node to another
time-expanded warehouse node corresponding to the same warehouse but one time step
later. Like transport edges, an inventory edge e has a flow cost parameter ce, equal to
the per-unit, per-period storage cost at the corresponding warehouse, and a flow capacity
me, equal to the storage capacity of the warehouse. Inventory edge e has two shelf-life
expenditure parameters, however. Let le represent the shelf-life expended on e under normal,
nonrefrigerated conditions, and let lre be the periods of shelf-life that is saved if warehouse
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w(e) corresponding to inventory edge e is refrigerated. Therefore 0 ≤ lre ≤ le ∀w ∈ W , e ∈
E(w), where E(w) = {((w, t), (w, t + 1)) : t ∈ {0, 1, ..., |T | − 1}} is the set of all inventory
edges at warehouse w.

An edge’s flow cost, capacity, and life-expenditure parameters are assumed to be equal for
all goods. This may seem like an oversimplification of the problem because different goods
may be shipped in packages of unequal weights and sizes. However, since the model is
continuous, a unit of a good may be defined in terms of kilograms or liters so that transport
and storage costs and capacities will not differ widely across goods. For the shelf-life of
goods, it is assumed that the perishing rate of goods responds similarly across the spectrum
of storage and transport conditions in the network, which is reasonable for a set of quite
similar goods.

The directed graph G = 〈N , E〉 that abstractly represents the time-expanded distribu-
tion network is illustrated by example in Figure 8 and consists of the following nodes and
edges:

N ⊂ {src} ∪ (S × T ) ∪ (G × S × T ) ∪ (W × T )

E ⊂ ({src}×(S×T ))∪((S×T )×(G×S×T ))∪((G×S×T )×(W×T ))∪((W×T )×(W×T ))

2.2 Notation for Orders

Demand for units arises at a subset of the time-expanded warehouse nodes. The demand for
a particular good g at warehouse node (w, t) is referred to as order (w, t, g), and the set of all
orders is O. Each order o = (w, t, g) ∈ O is associated with a demand parameter do equal to
the quantity of the good g demanded at (w, t) and an unmet demand per-unit penalty cost
cuo that quantifies how important it is to the decision-maker to satisfy units of demand for
order o. Order o = (w, t, g) is also associated with a parameter lmax

o specifying the maximum
periods of shelf-life that can be expended for units being routed from a supplier to the order
node (w, t). Since the total shelf-life of good g is lg, l

max
(g,w,t) ≤ lg. To be useable after an

order is fulfilled, units generally need to arrive at warehouse nodes with at least a certain
minimum remaining shelf-life, so this inequality will be strict.

The RCR model allows for late deliveries for orders but penalizes lateness on a per-unit,
per-period basis. This approach, which assumes that the decision-maker’s utility for late
deliveries declines linearly with the number of periods of lateness, is simple to model. A unit
that satisfies a fraction of the demand for order (w, t, g) is delivered late if it is routed through
the network to a node in {(w, t+ 1), ..., (w, t+ tlate − 1), (w, t+ tlate)}, where tlate(w,t,g) ∈ Z+ is
the maximum of allowed late periods for the order. Since G is a capacitated network, it is
not always possible to route enough units to node (w, t) to satisfy the full demand d(w,t,g),
and even if it is possible to meet the full demand on-time, it may be expensive to do so.
In such cases, the allowance for late deliveries may be valuable if the per-unit, per-period
penalty cost of lateness for order o, clateo , is not too high. The parameters should satisfy the
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Figure 8: Small Example of a Time-Expanded Network Graph
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represent inventory edges.

relationship tlateo × clateo ≤ cuo , otherwise it would always be better to leave some demand for
order o = (w, t, g) unmet than to satisfy it by routing to node (w, t+ tlate).

2.3 Paths and Flow Routing Decisions

A simple, continuous flow routing problem for multiple goods on a network can be solved very
quickly with an edge-based multicommodity flow linear program, even for large networks.
One aspect of the RCR that makes it more difficult to formulate and solve is the constraint
on shelf-life expenditure, which ensures that each unit has a sufficient remaining shelf-life at
its time of delivery. This constraint cannot be modeled with a simple edge formulation for
the multicommodity flow problem because it requires summing over all of the edges that a
unit is routed over.

In the path formulation for the multicommodity flow problem, flow routing decisions are
made on paths through the network rather than on edges. A path is typically defined as an
ordered list of nodes or edges that are traversed from an origin to destination in the network.
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Since a path formulation keeps track of the edges that each unit is routed over, a shelf-life
expenditure constraint can be incorporated into such a formulation. However, in the RCR
problem, the shelf-life expended on inventory edges depends on the warehouse refrigeration
decisions, which are made simultaneously with the routing decisions. Under a particular
vector of refrigeration decisions, a path that routes goods to satisfy an order o may have a
total shelf-life expenditure not exceeding the allowed lmax

o , but under a different vector of
refrigeration decisions, the path may exceed the allowed shelf-life expenditure.

This means the constraints on shelf-life expenditure must link the binary refrigeration vari-
ables and the continuous flow routing variables in a complex way to ensure that there is zero
flow on paths that exceed the shelf-life expenditure. One possible formulation requires an
additional set of binary variables to indicate whether paths violate lmax and an additional
set of constraints to set flow on each violating path to zero. Another formulation requires an
additional set of continuous variables to measure the positive difference between each path’s
shelf-life expenditure and lmax and a nonlinear term that multiplies these variables and the
flows on paths. However, neither of these formulations are amenable to decomposition or
large-scale optimization techniques, which are necessary because the number of paths and
thus the number of flow variables is exponential in the size of G.

To overcome these modeling difficulties, a path is re-defined so that the shelf-life expended
on a path becomes a parameter that is invariant to the refrigeration decisions. Now, a path
p is an ordered list of pairs (e, rp,e), where e ∈ E is an edge traversed by the path and
rp,e ∈ {0, 1} is an indicator parameter for whether edge e is an inventory edge associated
with a warehouse that p assumes to be refrigerated. Any path p that requires a warehouse
w to be refrigerated (i.e. rp,w(e) = 1 for some edge e traversed by p) is an impossible path if
w is not refrigerated. This variable re-definition approach makes the shelf-life expenditure
constraints implicit in the formulation by not creating a flow variable for any path p that has
a shelf-life expenditure exceeding lmax

o(p) , where o(p) is the order that p routes units to satisfy.
The new formulation for the RCR problem has a very simple constraint linking warehouse
refrigeration decisions and path flow decisions.

2.4 Scenario-Based Stochastic Modeling

The RCR is formulated as a two-stage scenario-based stochastic model. Let crw be the fixed,
one-off cost of refrigerating warehouse w in the first stage. Let K be the set of scenarios
representing a subset of the possible outcomes for orders and edge parameter values for the
second stage. Each scenario will have a different set of orders and therefore also a different set
of paths satisfying orders, so these sets are indexed over the scenarios. To simplify notation,
an order o ∈ Ok exists only in scenario k, even if the tuple (w, t, g) = o matches the tuple
for an order in a different scenario. Similarly, a path p ∈ Pk exists only in scenario k and is
different from a path with the same ordered list of pairs that exists in a different scenario.
Since the edge parameters may differ across scenarios, these parameters are explicitly indexed
by scenario except where the index is obvious from context.
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The decision-maker has a probability distribution over the scenarios, defined by the scenario
probabilities 0 ≤ αk ≤ 1 for k ∈ K that satisfy

∑
k∈K αk = 1. Using the scenario probabilities,

the decision-maker optimizes an expectated value over the scenarios. The expected value
objective ensures that a scenario that is more likely to occur is given proportionally more
weight in the decision-making process.

2.5 Formulation for the Refrigeration and Commodity Routing Problem

Table 1: Sets

W warehouses
E edges in G
E(w) inventory edges at warehouse w ∈ W
K scenarios in the stochastic model
Ok orders in scenario k ∈ K
Pk paths valid for orders in scenario k ∈ K
Pk(e) paths that include edge e ∈ E in scenario k ∈ K
Pk(o) paths valid for order o ∈ Ok in scenario k ∈ K

Table 2: Parameters

αk ∀k ∈ K ≥ 0,≤ 1, probability of scenario k
rp,e ∀p ∈ Pk, e ∈ E 1 if e is an inventory edge assumed refrigerated on p, else 0
crw ∀w ∈ W fixed cost of refrigeration for warehouse w
cfp ∀p ∈ Pk unit cost of flow on path p used in scenario k
cuo ∀o ∈ Ok unit penalty for unmet demand for order o in scenario k
do ∀o ∈ Ok units of good demanded in order o in scenario k
mk,e ∀k ∈ K, e ∈ E flow capacity on edge e in scenario k
m̂k,w ∀k ∈ K, w ∈ W all-periods flow capacity at warehouse w in scenario k

The flow cost per unit on path p is the sum of the costs of the edges on the path plus the
lateness cost for the path. This parameter is used for notational convenience and is easily
calculated during the process of constructing paths. The lateness cost for a path satisfying
order o(p) = (w, t, g) with destination node (w, t + τ), τ ∈ {1, . . . , tlateo(p)} is τ × clateo(p), where

clateo is the cost per late period for order o. So for a path p that delivers goods τ periods late
for order o(p) in scenario k, the flow cost on p is as follows.

cfp =
∑

e∈E(p)

ce,k + τclateo(p) ∀k ∈ K, p ∈ Pk

The parameter m̂k,w for the all-periods inventory flow capacity at warehouse w in scenario
k is a big-M type parameter calculated by summing the flow capacities in k of the inventory
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edges ((w, t), (w, t+ 1)) at w.

m̂k,w =
T−1∑
t=0

mk,((w,t),(w,t+1)) =
∑

e∈E(w)

mk,e ∀k ∈ K, w ∈ W

Table 3: Variables

Rw ∈ {0, 1} ∀w ∈ W = 1 iff warehouse w is refrigerated
Fp ≥ 0 ∀p ∈ Pk flow on path p used in scenario k ∈ K
Uo ≥ 0 ∀o ∈ Ok unmet demand for order o in scenario k ∈ K

Note that if the decision maker cannot make a refrigeration decision on a particular ware-
house, the variable associated with that warehouse is simply fixed to represent whether the
storage location is refrigerated or not. For example if a storage location w is owned by a
partner organization that does not allow the decision-maker to install refrigeration capacity
at the facility, then the decision variable Rw is fixed to 1 if the facility is already refrigerated
or 0 if not. Similarly, if the decision-maker is unable to refrigerate a warehouse w due to
some constraint about the warehouse then Rw = 0 is fixed, and if w is already refrigerated,
Rw = 1 is fixed.

Model RCR: Full Refrigeration and Commodity Routing Problem

min
∑
w∈W

crwRw +
∑
k∈K

αk

(∑
p∈Pk

cfpFp +
∑
o∈Ok

cuoUo

)

s.t. m̂wRw −
∑

e∈E(w)

∑
p∈Pk(e)

rp,eFp ≥ 0 ∀k ∈ K, w ∈ W

∑
p∈Pk(e)

Fp ≤ me ∀k ∈ K, e ∈ E

∑
p∈Pk(o)

Fp + Uo = do ∀k ∈ K, o ∈ Ok

Rw ∈ {0, 1} ∀w ∈ W
Fp ≥ 0 ∀k ∈ K, P ∈ Pk

Uo ≥ 0 ∀k ∈ K, o ∈ Ok

The objective function minimizes the total expected cost. The first component is the sum
of the refrigeration costs for warehouses that are selected to be refrigerated. The second
component is an expectation weighted by the scenario probabilities alphak, k ∈ K of the cost
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of routing the commodities on the logistics network and the penalty cost for demand going
unmet.

The second constraint set limits, for each edge e ∈ E , the total flow on paths including the
edge

∑
p∈Pk(e)

Fp to the capacity of the edge me. The third constraint set specifies, for each
order o ∈ Ok, k ∈ K, the relationship between the quantity demanded do, the unmet demand
Uo, and the demand satisfied due to flows on paths valid for the order

∑
p∈Pk(o)

Fp. Since
the unmet demand and path flows are nonnegative, the quantity of goods satisfying an order
can never exceed the demand.

The first constraint set ensures that if a warehouse w ∈ W is not refrigerated (Rw = 0),
the total flow over w’s inventory edges e ∈ E(w) on paths for which w is hypothetically
refrigerated for e is 0. For a particular warehouse w, this means that if w is not refrigerated
then there can be no flow on any paths that traverse inventory edges that are assumed to
be refrigerated at w. This a big-M type constraint that is tight because it acknowledges
that the maximum possible flow on all inventory edges assumed to be refrigerated for a
warehouse w is equal to the total all-periods flow capacity summed over the inventory edges
e ∈ E(w).

Note that it is not necessary to define a constraint in the opposite direction that ensures zero
flow on all paths that assume a warehouse w is nonrefrigerated when Rw = 1. This is because
these paths are feasible for either refrigeration state of w, since refrigerating an additional
warehouse while keeping all other refrigeration decisions constant can never increase the
shelf-life expenditure of paths.

Note that this formulation for the warehouse refrigeration constraints is aggregated over the
inventory edges e ∈ E(w) at each warehouse w. A tighter, disaggregated formulation for
the refrigeration constraints limits flow on each individual inventory edge assumed to be
refrigerated to 0 when the associated warehouse w is not refrigerated, and has the same
effect when refrigeration variables are strictly binary (not relaxed). There are |W| × (|T | −
1) disaggregated capacity constraints or |W| aggregated capacity constraints. The big-M
parameter on a disaggregated constraint is the flow capacity on the associated inventory
edge e ∈ E , me.

meRw −
∑

p∈P(e)

Fp ≥ 0 ∀w ∈ W , e ∈ E(w)

If solving the full MIP above, using the disaggregated constraint set may yield better solution
time and quality because the LP relaxations in the branch-and-bound tree could be signif-
icantly tighter. However, the aggregated constraint set is used because following a Benders
decomposition of the RCR model there will be no benefit from disaggregation, so the smaller
constraint set is preferred.

The RCR model has a defined structure that is better visualized in matrix-vector format.
Table 4 defines matrices representing the coefficients on variables in the constraint matrix of
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the RCR model. The RCR model is then rewritten to illustrate the block structure of the
constraint matrix.

Table 4: Matrix Representations of Variable Coefficients in Constraints

M̂k |W| × |W| diagonal square matrix with the entries of m̂k,w ∀w ∈ W
WPk |W| × |Pk| (w, p) is the number of inventory edges at w on p assumed refrigerated
EPk |E| × |Pk| (e, p) is 1 iff edge e is traversed by p
OPk |Ok| × |Pk| (o, p) is 1 iff p is valid for order o (columns have a single 1)
IOk |Ok| × |Ok| the identity matrix with dimension equal to the number of orders

Model RCR: Full Refrigeration and Commodity Routing Problem

min crR + α1(c
f
1F1 + cu

1U1) + α2(c
f
2F2 + cu

2U2) · · · + αk(cf
kFk + cu

kUk)

s.t. M̂1R − WP1F1 ≥ 01

EP1F1 ≤m1

OP1F1 + IO1U1 = d1

M̂2R − WP2F2 ≥ 02

EP2F2 ≤m2

OP2F2 + IO2U2 = d2

...
. . .

...

M̂kR − WPkFk ≥ 0k

EPkFk ≤mk

OPkFk + IOkUk = dk

Rw ∈ {0, 1} ∀w ∈ W , Fp ≥ 0 ∀k ∈ K, P ∈ Pk, Uo ≥ 0 ∀k ∈ K, o ∈ Ok

The number of rows in the constraint matrix of the RCR model is |K| × (|W|+ |E|) +∑
k∈K |Ok| and the number of columns is |W| +

∑
k∈K (|Pk|+ |Ok|). Note that the binary

refrigeration variables link all of the scenarios through the refrigeration constraints. In
the next section, Benders decomposition is used to overcome the hardness of these linking
constraints. Since the number of paths in each scenario is exponential in the size of G, a
large-scale optimization algorithm is also implemented.
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3 Tractable Solution Algorithms

This section develops the entire solution algorithm for the RCR formulation after discussing
its size in Section 3.1. Section 3.2 describes the Benders decomposition algorithm for sepa-
rating the first stage refrigeration problem (1R) from the second stage commodity routing
problem (2CR) for each scenario k ∈ K. Section 3.3 describes the cutting planes algorithm
used to solve a second stage commodity routing problem to optimality using the multilabel
constrained path pricing algorithm. Table 5 summarizes the notation for first and second
stage model names. Tables 6 to 8 summarize the model sets, parameters, and variables used
in this section. Figure 9 provides a high-level representation of the entire solution algorithm
for the RCR formulation. When contextually obvious, indexing of models, parameters and
sets by scenario is dropped for notational convenience.

Table 5: Model Names and Notation

1R full first stage refrigeration problem
1R-R first stage refrigeration problem with a restricted set of cuts
2CR full second stage commodity routing primal problem
2CR(k) full second stage commodity routing primal problem for scenario k ∈ K
2CR(R̄) second stage problem given a vector R̄ of first stage refrigeration decisions
2CR-D full second stage commodity routing dual problem
2CR-DR second stage commodity routing dual problem with a restricted set of cuts

Table 6: Sets

W warehouses
E edges in G
E(w) inventory edges at warehouse w ∈ W
K scenarios in the stochastic model
Ok orders in scenario k ∈ K
Pk paths valid for orders in scenario k ∈ K
Pk(e) paths that include edge e ∈ E in scenario k ∈ K
Pk(o) paths valid for order o ∈ Ok in scenario k ∈ K

3.1 Size of the RCR

The full refrigeration and commodity routing problem RCR has |W| binary refrigeration
variables,

∑
k∈K |Pk| continuous path flow variables, and

∑
k∈K |Ok| continuous unmet de-

mand variables. The number of edges in the multigraph G can be large. Even before paths
were re-defined, the number of standard paths in G is exponential in the size of G. Following
the re-definition of a path p as an ordered list of pairs (e, rp,e), where e ∈ E is an edge tra-
versed by the p and rp,e ∈ {0, 1} is an indicator parameter for inventory edge refrigeration,
each standard path of length n edges corresponds to almost 2n re-defined paths in the worst
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Table 7: Parameters

αk ∀k ∈ K ≥ 0,≤ 1, probability of scenario k
rp,e ∀p ∈ P , e ∈ E 1 if e is an inventory edge assumed refrigerated on p, else 0
crw ∀w ∈ W fixed cost of refrigeration for warehouse w
cfp ∀p ∈ P unit cost of flow on path p
cuo ∀o ∈ O unit penalty for unmet demand for order o
do ∀o ∈ O units of good demanded in order o
mk,e ∀k ∈ K, e ∈ E flow capacity on edge e in scenario k
m̂k,w ∀k ∈ K, w ∈ W all-periods flow capacity at warehouse w in scenario k
R̄ ∀w ∈ W refrigeration decision on w passed to a second stage problem

Table 8: Variables

Rw ∈ {0, 1} ∀w ∈ W = 1 iff warehouse w is refrigerated
Fp ≥ 0 ∀p ∈ P flow on path p
Uo ≥ 0 ∀o ∈ O unmet demand for order o
ρw ≤ 0 ∀w ∈ W dual price on refrigeration constraint for w
µe ≤ 0 ∀e ∈ E dual price on edge flow capacity constraint for e
δo ≥ 0 ∀o ∈ O dual price on order demand constraint for o
Zk ≥ 0 ∀k ∈ K maximum second stage cost for scenario k in 1R-R
Z ′k ≥ 0 ∀k ∈ K optimal objective value of 2CR-D(k)(R̄)

case. Furthermore, the warehouse refrigeration variables link all |K| second stage commodity
routing problems 2CR(k) with the first stage refrigeration problem 1R in a set of |K| × |W|
hard refrigeration constraints. The full model RCR is therefore very likely to be intractable
to solve except for a small network G and few scenarios.

3.2 Benders Decomposition for the RCR

To overcome the hardness of the linking constraints, a Benders decomposition [9] is used to
separate the 1R and the 2CR(k) for all scenarios k. Tsitsiklis [49] describes the process of
decomposing a general two-stage stochastic problem and using a cutting planes procedure
to iteratively add Benders cuts to the relaxed first stage problem until a desired optimality
gap is satisfied. A Benders cut is generated from an optimal dual solution to a second stage
problem. This Benders framework is adapted for the two-stage stochastic problem RCR. Let
1R-R be the relaxed first stage refrigeration problem, which is the Benders master problem.
For a vector of first stage refrigeration decisions R̄ given by 1R-R, let 2CR-D(k)(R̄) be the
full dual problem of the second stage commodity routing problem for scenario k. This model
notation is summarized in Table 5.

The general second stage primal problem 2CR is constructed from the full stochastic prob-
lem RCR by considering a single scenario and taking the refrigeration decisions as fixed
parameters R̄w ∀w ∈ W . The now-fixed cost of refrigeration is removed from the objective
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Figure 9: Solution Algorithm for the RCR

Benders Master Problem

initialize 1R-R, 2CR-DR(k) ∀k ∈ K,
let re-solve scenarios K′ = K

for scenarios {k1, ..., ki, ..., kn} ∈ K′ :

solve 2CR-DR(k)(R̄)
to optimality

ki

...

k1

...

kn

solve 1R-R with new cuts

for scenarios {k1, ..., ki, ..., kn} ∈ K′ :

is Z ′ki > Zki(1 + ε) ?

ki

add to 1R-R:
cut(ρ̄, µ̄, δ̄)ki

yes

2CR-DR(k)
done

K′ = K′\{ki}

no...

k1

...

kn

is K′ = ∅ ?

? ?

STOP with (approximate) optimal
solutions to 1R and each 2CR-D(k)

yes
no

Benders Sub-Problem

for each undesirable path in
Pki , remove the corresponding

path cut from 2CR-DR(ki)

solve 2CR-DR(ki)

add initial labels, let t = 0

push labels at t, let t = t + 1

is t > tlast ?

for each order o ∈ Oki and each
label valid for o, construct a

path and add to Pnew
ki

and to Pki

yes
no

is Pnew
ki

= ∅ ?

STOP with
optimal solution
for 2CR-DR(ki)

yes

for each p ∈ Pnew
ki

,
add cut to
2CR-DR(ki)

no no

R̄
Z

′ k
i
,(
ρ̄
,µ̄
,δ̄

) k
i

A high-level representation of the Benders decomposition algorithm with the second stage
problem solved via a cutting planes algorithm. The dark shaded box within the right box is
a very compact representation of the multilabel constrained shortest path algorithm that is
used to price paths for the second stage cutting planes procedure. This particular represen-
tation uses the rules in Tsitsiklis [49] for choosing which Benders subproblems to re-solve,
whereas the representation in Algorithm 3.1 generalizes these rules.

function, and the refrigeration constraints are rearranged so that the parameters appear on
the right hand side. Dual prices are then defined on each constraint in the primal problem
2CR. ρw is the dual price on the refrigeration constraint for warehouse w ∈ W , µe is the
dual price on the edge flow capacity constraint for edge e ∈ E , and δo is the dual price on
the demand constraint for order o ∈ O.
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Model 2CR: Full Second Stage Commodity Routing Primal Problem

min
∑
p∈P

cfpFp +
∑
o∈O

cuoUo duals

s.t.
∑

e∈E(w)

∑
p∈P(e)

rp,eFp ≤ m̂wR̄w ∀w ∈ W ρw ≤ 0

∑
p∈P(e)

Fp ≤ me ∀e ∈ E µe ≤ 0

∑
p∈P(o)

Fp + Uo = do ∀o ∈ O δo ≥ 0

As in the RCR, the refrigeration constraints in 2CR ensure that for every warehouse w ∈ W ,
the total flow over all inventory edges e at warehouse w on paths p for which rp,e = 1 (i.e. p
assumes that w is refrigerated on inventory edge e) is 0 if w is not refrigerated. The capacity
and demand constraints have not changed from the RCR formulation.

The dual problem 2CR-D of 2CR is now formulated. The columns of 2CR-D, like the
constraints of the primal, correspond to warehouses, edges, and orders. 2CR-D has two sets
of constraints, one indexed over the set of paths P and one indexed over the set of orders
O. The dual prices on the path constraints correspond to the primal path flow variables
Fp ∀p ∈ P , and the dual prices on the order constraints correspond to the primal unmet
demand variables Uo ∀o ∈ O.

Model 2CR-D : Full Second Stage Commodity Routing Dual Problem

max
∑
w∈W

m̂wR̄wρw +
∑
e∈E

meµe +
∑
o∈O

doδo duals

s.t.
∑

e∈E(p)

(rp,eρw(e) + µe) + δo(p) ≤ cfp ∀p ∈ P Fp ≥ 0

δo ≤ cuo ∀o ∈ O Uo ≥ 0

Let D represent the feasible region of 2CR-D. Let PD be the set of extreme points of D and
let QD be the set of extreme rays of D. Since the fixed refrigeration decisions R̄ appear only
in the objective function and not in the constraints of 2CR-D, D does not depend on the
refrigeration decisions. To prove that Benders extreme point cuts can always be generated
and no Benders feasibility cuts need to be generated in the Benders decomposition algorithm
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for RCR, it is proved that D is always non-empty and bounded, and therefore contains
extreme points but no extreme rays.

Theorem 3.1. (D contains no extreme rays)
The feasible region D of 2CR-D is non-empty and bounded.

Proof. 0 ≤ δo ≤ cuo ∀o ∈ O, so let δo = 0 ∀o ∈ O. Substituting into the constraint indexed
over paths:∑
e∈E(p)

(rp,eρw(e) + µe) ≤ cfp ∀p ∈ P

This inequality is always satisfied because the left hand side is nonpositive (ρw ≤ 0 ∀w ∈ W
and µe ≤ 0 ∀e ∈ E) and cfp ≥ 0 ∀p ∈ P . Therefore, D is non-empty.

By strong duality theory [49], D 6= ∅ implies that the primal problem 2CR is either infeasible
or feasible and bounded. For any vector R̄, a feasible solution for 2CR(R̄) is (F,U) = (0,d),
so 2CR is never infeasible. This implies that the primal-dual pair is feasible and bounded.
Therefore, D is non-empty and bounded.

By Theorem 3.1, D is non-empty and contains no extreme rays (QD = ∅). Therefore, the
optimal objective value of 2CR and 2CR-D can be characterized in terms of only the extreme
points PD of 2CR-D. For a vector R̄ of refrigeration decisions, let the optimal objective value
of 2CR-D(R̄) be Z ′(R̄).

Z ′(R̄) = max
(ρ,µ,δ)∈PD

(∑
w∈W

m̂wR̄wρw +
∑
e∈E

meµe +
∑
o∈O

doδo

)

Alternatively, Z ′(R̄) is the smallest number Z ′ such that the following inequalities hold:

Z ′ ≥
∑
w∈W

m̂wR̄wρw +
∑
e∈E

meµe +
∑
o∈O

doδo ∀(ρ,µ, δ) ∈ PD

For some vector R̄ and scenario k ∈ K, let Z ′k be the optimal value for the second stage
problem 2CR-D(k)(R̄) with feasible region Dk and extreme points PDk

. It is now possible
to formulate the first stage refrigeration problem 1R as a Benders master problem.
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Model 1R: First Stage Refrigeration Problem

min
∑
k∈K

αkZk +
∑
w∈W

crwRw

s.t. Zk ≥
∑
w∈W

m̂k,wρ̄wRw +
∑
e∈E

mk,eµ̄e +
∑
o∈Ok

doδ̄o ∀k ∈ K,
(
ρ̄, µ̄, δ̄

)
∈ PDk

This formulation for 1R reduces the number of variables substantially, from |W|+
∑

k∈K |Pk|+∑
k∈K |Ok| in the full RCR formulation to just |K| + |W| + |E| +

∑
k∈K |Ok| in the Benders

master problem 1R. However, the number of constraints is equal to the number of extreme
points in Dk, and the number of extreme points is usually exponential in the number of
variables and constraints [49]. However, most of these constraints are likely to be inactive at
an optimal solution, so a cutting planes algorithm may be used to solve 1R. In each iteration
of the cutting planes algorithm, a relaxed problem 1R-R is solved and cuts violating the
current solution are added to 1R-R [49]. Maintaining a much smaller set of constraints is
likely to make 1R more tractable to solve.

3.2.1 Cut Generation Algorithm for the Benders Decomposition

In one iteration of the cutting planes algorithm for the Benders master problem 1R, the
relaxed master problem 1R-R is solved and one or more violated Benders cuts are added. A
violated constraint is identified by an optimal extreme point solution

(
ρ̄, µ̄, δ̄

)
∈ PDk

of the
second stage dual problem 2CR-D(k) if the optimal cost Z ′k of the solution is greater than Z∗k ,
the variable in 1R-R representing the maximum second stage cost for scenario k ∈ K.

If Z ′k > Z∗k , the cutting planes algorithm adds the following violated cut to the relaxed
master problem 1R-R.

Zk ≥
∑
w∈W

m̂k,wρ̄wRw +
∑
e∈E

mk,eµ̄e +
∑
o∈Ok

doδ̄o

Algorithm 3.1 describes the Benders decomposition solution method for the RCR problem.
The algorithm requires a fully relaxed first stage refrigeration problem 1R-R with no cuts, a
set {2CR-D(k) : k ∈ K} of second stage dual problems, an initial re-solve set Kr of scenarios
k ∈ K to solve in the first master iteration, and a desired relative optimality gap ε. After each
second stage problem in the re-solve set Kr is solved to optimality from its previous optimal
basis (Line 6), a (sufficiently) violating cut is added to 1R-R if it exists. The updated MIP
1R-R is then solved to optimality from its previous optimal basis (Line 11). According to
some specified rule, the function Re-solveSet then selects a subset Kr ⊆ K to be the set of
second stage problems to be re-solved at the next iteration (Line 12). The Benders algorithm
is terminated when the Re-solveSet function returns no subproblems to be re-solved, and
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if this only occurs when Z ′k ≤ Z∗k(1 + ε) ∀k ∈ K, then a near-optimal solution is returned for
small ε (or an exact optimal solution if ε = 0).

Algorithm 3.1 Benders Decomposition Algorithm for First Stage Refrigeration Problem

1: procedure Benders(1R-R, {2CR-D(k) : k ∈ K},K,Kr, ε)
2: P1R-R ← {(R,Z) : Rw ∈ {0, 1} ∀w ∈ W , Zk ≥ 0 ∀k ∈ K} . Begin with no cuts
3: (R∗,Z∗)← (0,0) . Begin with trivial solution
4: while Kr 6= ∅ do . Loop while ∃ sub-problems to re-solve
5: for all k ∈ Kr do . For each sub-problem to re-solve
6: (Z ′k, (ρ̄, µ̄, δ̄)k)← Solve(2CR-D(k)(R) . Solve the sub-problem
7: if Z ′k > Z∗k(1 + ε) then . Violating cut exists
8: P1R-R ← P1R-R ∩ {(R,Z) : Zk ≥ m̂kρ̄R + mkµ̄ + dδ̄k} . Add cut
9: end if

10: end for
11: (R∗,Z∗)← Solve(1R-R) . Solve restricted master
12: Kr ← Re-solveSet(K,Kr,Z∗,Z′, . . . ) . Identify sub-problems to re-solve
13: end while
14: return R∗

15: end procedure

Tsitsiklis [49] suggests re-solving each second stage problem 2CR-D(k) for which Z ′k > Z∗k(1+
ε) prior to solving the 1R-R again. However, this is not necessarily the best approach for
every problem, as demonstrated by Tsamasphyrou et al. [48] in their Benders algorithm for
a stochastic power generation model. When the Benders master problem is relatively easy to
solve in comparison to a Benders subproblem, solving fewer subproblems between each master
solve may accelerate the convergence of the Benders algorithm to an optimal solution. This
is because introducing cuts more regularly means the refrigeration decisions R̄ are updated
with new information from the subproblems more quickly, which is likely to reduce the total
number of subproblem iterations needed. In the computational testing section of this paper,
several different rules for choosing the re-solve set Kr ⊆ K are tested.

3.3 Cutting Planes Algorithm for a 2CR-D

The general second stage commodity routing problem 2CR is a multicommodity flow problem
with side constraints on paths. This class of problems is known to be NP-hard with the
constrained shortest-path problem as a special case [28]. Since the number of paths |Pk| in
a second stage problem 2CR(k) is exponential in the size of the graph G, the dual problem
2CR-D(k) has a huge number of constraints (equivalently, 2CR(k) has a huge number of
variables) and is therefore likely to be intractable.

Fortunately, a cutting planes approach can be used to solve each 2CR-D(k) (equivalently,
a column generation approach for 2CR(k)) without having to enumerate all paths in G.
Re-define Pk as the current restricted set of paths for scenario k ∈ K, and let 2CR-DR(k)

32



be the relaxed second stage problem with path constraints indexed over Pk. At the start of
the cutting planes algorithm, 2CR-DR(k) is initialized with Pk = ∅.

During an iteration of the Benders algorithm, the relaxed Benders master problem is solved
and an updated vector of refrigeration decisions R̄ is passed to 2CR-DR(k) if k is in the
re-solve set Kr. Since the refrigeration decisions R̄ do not appear in any of the constraints of
2CR-DR(k), R̄ does not impact the feasible region of 2CR-DR(k). R̄ appears as a parameter
in the objective function of 2CR-DR(k), so a change in R̄ following a Benders iteration may
mean the current basis is no longer optimal for the full dual problem 2CR-D(k). Starting
from this basis, 2CR-DR(k)(R̄) is re-solved to optimality with the restricted set of path
cuts. Since the Benders algorithm needs an optimal extreme point solution to the full dual
problem 2CR-D(k), the second stage cutting planes algorithm must iteratively add newly-
violating path cuts to the restricted problem 2CR-DR(k)(R̄) until a new optimal solution
(ρ,µ, δ) ∈ PDk

for 2CR-D(k) is found.

Algorithm 3.2 Cutting Planes Algorithm for Second Stage Commodity Routing Problem

1: procedure CuttingPlanes(2CR-DR(k),Pk, R̄)
2: 2CR-DR(k)← UpdateObj(2CR-DR(k), R̄) . Update R̄ parameters in objective
3: (2CR-DR(k),Pk)← InitDrop(2CR-DR(k),Pk) . Drop unwanted existing cuts
4: Pnew

k ← ∅ . Initialize set of new paths
5: repeat
6: (2CR-DR(k),Pk)← LoopDrop(2CR-DR(k),Pk) . Drop unwanted cuts
7: for all p ∈ Pnew

k do . For each new path

8: P2CR-DR(k) ←P2CR-DR(k) ∩
{

(ρ̄, µ̄, δ̄)k :
∑

e∈E(p)

(rp,eρw(e)+ µe)+ δo(p)≤cfp
}
. Add cut

9: end for
10: Pk ← Pk ∪ Pnew

k . Add new paths to existing path set
11: (Z ′k, (ρ̄, µ̄, δ̄)k)← Solve(2CR-DR(k)) . Solve relaxed second stage problem
12: Pnew

k ← FindPaths((ρ̄, µ̄, δ̄)k,Pk) . Find a set of good new paths
13: until Pnew

k = ∅ . End loop when no new paths
14: return (Z ′k, (ρ̄, µ̄, δ̄)k,Pk)
15: end procedure

Algorithm 3.2 describes the cutting planes algorithm for a second stage commodity routing
problem, which requires a problem 2CR-DR(k) and a previous initial basis, the restricted
set of paths from the previous solve, and a vector of refrigeration decisions from the Benders
master problem. The InitDrop function (Line 3) uses a specified rule to relax a subset of
the path cuts that were present in 2CR-DR(k) at the end of a previous call to Algorithm 3.2
and before a change in R̄. The LoopDrop function (Line 6) performs the same task during
iterations of the second stage cutting planes algorithm, and may use a different rule for
choosing path cuts to relax. Dropping constraints with high slack, or equivalently, dropping
variables with large positive reduced cost, is a common technique that can improve the
efficiency of large-scale optimization algorithms by keeping the problem size small. In the
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computational testing section of this paper, several combinations of rules for dropping path
cuts are tested.

After each solve of the relaxed second stage problem 2CR-DR(k) (Line 11), the FindPaths
procedure is passed the current solution and the restricted set of paths (Line 12). This
procedure is the path pricing algorithm, described in Section 3.4. FindPaths returns a set
of new paths Pnew

k that are feasible for the implicit shelf-life expenditure constraints and
correspond to violating cuts for 2CR-DR(k). If Pnew

k 6= ∅, a cut is added to 2CR-DR(k) for
each p ∈ Pnew

k (Line 8) and the new paths are added to the set of existing paths Pk (Line 10).
Algorithm 3.2 terminates with an optimal solution for the full second stage dual problem
2CR-D(k)(R̄) when no new feasible paths corresponding to violating cuts are generated by
FindPaths.

3.4 Path Pricing Algorithm for the Second Stage Cutting Planes Procedure

Given a current optimal solution (ρ,µ, δ) for a relaxed second stage problem 2CR-DR, the
path pricing algorithm must generate paths that correspond to violated cuts and are feasible
for the shelf-life constraints. A path p was re-defined as an ordered list of pairs (e, rp,e),
where e ∈ E is an edge traversed by the p and rp,e ∈ {0, 1} indicates whether edge e is an
inventory edge associated with a warehouse that p assumes to be refrigerated. The edges
in this ordered list of pairs must be traversable from the supersource src to a destination
node (a time-expanded warehouse node) at which demand for order o(p) can be satisfied.
If tlateo(p) ∈ Z+ is the number of allowable late periods for the order o(p) = (g, w, t), the

destination node must be one of (w, t), (w, t+ 1), ..., (w, t+ tlateo − 1), (w, t+ tlateo ).

Thus the pricing subproblem for the second stage cutting planes algorithm can be thought
of as an optimization problem that seeks to find a traversable list of such pairs satisfing
an order o with a minimal overall reduced cost, subject to the constraint that the sum of
shelf-life expenditures on these edge pairs is no greater than lmax

o . If an optimal (feasible)
path exists for this optimization problem, it shall be returned to the cutting planes master
problem 2CR-DR(k) if its cost is negative. If the optimal objective value is nonnegative, no
paths with negative reduced cost exist. In this case, there are no more violated cuts to add
to 2CR-DR(k), so the current solution (ρ,µ, δ) ∈ PDk

is optimal for the full dual second
stage problem 2CR-D(k)(R̄).

3.4.1 Minimizing the Reduced Costs of Paths

The cost of a path p is the sum of the costs of the edges on the path plus the lateness cost
for the path. The lateness cost for a path satisfying order o(p) = (w, t, g) with destination
node (w, t+ τ), τ ∈ {1, . . . , tlateo(p)} is the cost per late period times the number of late periods,

τ × clateo(p). So for a path p that delivers goods τ periods late for order o(p), the cost of p

is cfp =
∑

e∈E(p) ce + τclateo(p). Given a current optimal solution (ρ,µ, δ) for the relaxed dual
problem, the negative reduced cost condition for a path p can be rearranged and written as
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follows.∑
e∈E(p)

(ce − rp,eρw(e) − µe) − δo(p) + τclateo(p) < 0

For the general problem of finding the lowest reduced cost path on a network, the typical
approach is to use dual solution values to modify the costs on nodes and edges such that
an efficient shortest-path type algorithm will minimize reduced cost [36]. The sum in the
reduced cost inequality is indexed over edges e ∈ E(p) for path p, so each edge in G is
assigned the modified cost ce − rp,eρw(e) − µe for a path p. For any noninventory edge e,
rp,e = 0 for all p, and for an inventory edge e, rp,e = 1 if e is assumed to be refrigerated on p.
Therefore, this edge cost assignment has the desired effect of subtracting the dual variables
ρw(e) for all inventory edges e on a path that are assumed to be refrigerated. The reduced
cost equation also adds −δo(p) + τclateo(p) to the cost of path p, so for o = (w, t, g), so each node

(w, t + τ), τ ∈ {0, 1, . . . , tlate} is assigned this term. Now, a shortest path in the graph G
containing these modified edge and node costs will be the smallest reduced cost path.

Figure 10 offers a simple example of a path on the graph with modified edge and node
costs. Note that the costs on edges are always nonnegative because of the signs on the dual
variables (µe ≤ 0 ∀e ∈ E and ρw ≤ 0 ∀w ∈ W) and the fact that edge flow costs ce are
nonnegative.

Figure 10: An Example Path, Displaying Modified Node and Edge Costs

src s, 1−µsrc,(s,1)
g1, s, 1

(c− µ)(s,1),(g1,s,1)
w2, 3

(c− µ)(g1,s,1),(w2,3)

w3, 4

(c− µ)(w2,3),(w3,4)

w3, 5
(c− µ)(w3,4),(w3,5)

w4, 8
(c− µ)(w3,5),(w4,8)

w4, 9
(c− µ)(w4,8),(w4,9)

−ρw4

refrigerated
−δ(w4,9,g1)

An example path valid for order (w4, 9, g1), with modified edge costs taking dual values from
2CR-DR. The path delivers goods on time since the destination node (w4, 9) coincides with
the order node. Inventory edges are dotted, and an inventory edge that is assumed to be
refrigerated on the path is labeled.

The path in Figure 10 leaves good-supplier node (g1, s, 1), and passes over transport edges
((g1, s, 1), (w2, 3)), ((w2, 3), (w3, 4)), ((w3, 5), (w4, 8)), an inventory edge ((w3, 4), (w3, 5)) as-
sumed to be nonrefrigerated, and an inventory edge ((w4, 8), (w4, 9)) that is assumed to be
refrigerated. The path ends at a node corresponding to the order (w4, 9, g1), so units of
g1 delivered on this path will fulfill the order on-time. If instead the path ended at a node
that is late for the order, the lateness penalty would be subtracted from the cost −δo on the
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destination node. The reduced cost rc(p) of the path p in Figure 10 is therefore the sum of
the edge costs and the node cost −δ(w4,9,g1) at (w4, 9).

rc(p) = −µsrc,(s,1) + (c− µ)(s,1),(g1,s,1) + (c− µ)(g1,s,1),(w2,3) + (c− µ)(w2,3),(w3,4)

+(c− µ)(w3,4),(w3,5) + (c− µ)(w3,5),(w4,8) + (c− µ)(w4,8),(w4,9) − ρw4 − δ(w4,9,g1)

= −ρw4 +
∑

e∈E(p)

(ce − µe)− δ(w4,9,g1)

=
∑

e∈E(p)

(ce − rp,eρw(e) − µe)− δo + clateo τ τ = 0 since p arrives on time

If this reduced cost is negative and the path is feasible for the shelf-life expenditure constraint,
then the pricing problem may generate this path so that a violated cut can be added to
2CR-DR. Note that on the inventory edge that the path displayed traverses, the dual value
ρw4 ≤ 0 on the refrigeration constraint for warehouse w4 appears in the edge cost. This
makes intuitive sense: if warehouse w4 is currently not refrigerated (i.e. R̄w4 = 0 in the
first stage decision vector R̄), then if the refrigeration constraint is currently tight ρw4 < 0,
subtracting this dual value in the reduced cost calculation will increase the reduced cost of
the path. This makes it less likely that the pricing subproblem will generate the path.

3.4.2 Satisfying the Shelf-life Expenditure Constraints

Figure 11 illustrates the accumulation of shelf-life expenditure over edges in an example path
in G. A simple shortest-path type algorithm may return a path that is infeasible for the
implicit shelf-life expenditure constraint. This constraint limits the total shelf-life that can
be expended on all edges traversed by p to no greater lmax

o(p) , the allowable shelf-life parameter
for the order that the path satisfies, so it can be written as follows. Note that lre was not
defined on non-inventory edges e, but since rp,e = 0 for such edges, lre can be made arbitrary
for non-inventory edges.∑
e∈E(p)

(le − lrerp,e) < lmax
o(p)

3.4.3 A Multilabel Algorithm for the Path Pricing Subproblem

The purpose of the second stage pricing problem is to avoid the enumeration of paths in
the network, which is very expensive computationally and in terms of memory. Multilabel
shortest path algorithms use a concept of path domination to ensure that the only nondomi-
nated paths are returned while avoiding enumeration of all paths. The path pricing problem
has two ‘resources’ on paths: a reduced cost and a remaining shelf-life expenditure.

Algorithms 3.3 to 3.7 describe the multilabel constrained shortest path algorithm. Algo-
rithm 3.3 (FindPaths) is the full algorithm, which calls Algorithms 3.4 to 3.5 (LabelsPush)
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Figure 11: An Example Path, Displaying Shelf-Life Expenditures on Edges

src s, 1
0

g1, s, 1
0

w2, 3
l(g1,s,1),(w2,3)

w3, 4

l(w2,3),(w3,4)

w3, 5
l(w3,4),(w3,5)

w4, 8
l(w3,5),(w4,8)

w4, 9
lR(w4,8),(w4,9)

HRIE

An example path valid for order (w4, 9, g1), with fixed shelf-life expenditures on edges.

in the main loop and then Algorithm 3.7 (ConstructPaths) once right before terminat-
ing. FindPaths requires a current vector of dual variables optimal for the relaxed second
stage dual problem 2CR-DR(k) and the current restricted set of paths. Several dictionaries,
defined in Table 9 are initialized (Line 2).

Table 9: Data Structures and Parameters

IL dict of tuples maps from unique label index n to contents of the label
NI dict of lists maps from node to ordered list of label indices at the node
TN dict of sets maps from time step to set of nodes at the time step
MCL dict of dicts maps from a node to orders reachable from the node and from

an order at a node to a list of (cost, shelf life) pairs for all
nondominated path extensions to the order

n counter unique label index, a counter for the number of labels added
pls list potential label tuples that have not yet been checked or added
pl tuple a potential label (pred index, current node, order, reduced cost,

shelf-life remaining, status), where status is True iff the last
edge was an inventory edge assumed refrigerated, else False

pos counter the current position in a list of existing labels

A loop then adds a set of initial labels for each order to the good-supplier nodes (Lines
4-18). These initial labels are assigned cumulative reduced costs (rc) equal to the sum of the
edge costs on aggregate and individual good supply edges (Line 7, Line 11), and remaining
shelf-lives (lr) equal to the parameter for the maximum shelf-life expenditure on a path for
order o, lmax

o (Line 8, Line 11). The bounding conditions are then checked (Lines 9-10) and
if the order cannot be reached from the good-supplier node, then no initial label is added
at the node. If the order is reachable, a potential label is instantiated in a list and the
AddNondomLabels function is called on the list to add the label to the good-supply node
if it is not dominated by any existing labels at the node (Line 12). The node is then added
to the set of nodes at time t that have labels (Line 13).

The main loop for the multilabel algorithm (Lines 19-29) is initialized with a current time
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Algorithm 3.3 Multilabel Constrained Shortest Paths Algorithm

1: procedure FindPaths((ρ̄, µ̄, δ̄)k,Pk)
2: IL← dict(), NI ← dict(), TN ← dict() . Initialize dicts
3: n← 1 . Begin with current label index 1

Add initial labels at good-supplier nodes
4: for all (g, s, t) ∈ G do . For each good-supplier node
5: for all (w, t′, g′) ∈ Ok do . For each order
6: if g = g′ ∧ (g, s, t) ∈MCL ∧ (w, t′, g′) ∈MCL(g, s, t) then . If order and

node goods match and feasible path is not impossible from node to order
7: rc← −δ(w,t′,g′) + c(‘src′,(s,t)) − µ(‘src′,(s,t)) + c((s,t),(g,s,t)) − µ((s,t),(g,s,t)) . Calc.

reduced cost at node
8: lr ← lmax

(w,t′,g′) . Life remaining is max. path expenditure

9: for all (mc,ml) ∈MCL(g, s, t)(w, t′, g′) do . For each min(cost,life) pair
10: if mc < −rc(1− ε′) ∧ lr ≥ ml then . If bounds are satisfied
11: pls← list((0, (g, s, t), (w, t′, g′), rc, lr, False)) . Create pot. label
12: n← AddNondomLabels(n, (g, s, t), pls) . Add nondom. label
13: TN(t)← TN(t) ∪ {(g, s, t)} . Add node to set of nodes at time
14: end if
15: end for
16: end if
17: end for
18: end for

Push labels forward in G from nodes at each sequential time step, checking dominance
19: tcurr ← 0 . Initialize current time step to first
20: while tcurr ≤ |T | − 1 do . Loop until current time step equals final time step
21: for all i ∈ TN(tcurr) do . For each node at current time step
22: for all ( , j) ∈ OutEdgesG(i) do . For each edge leaving the node
23: if j ∈MCL then . If to-node can reach any orders
24: n← LabelsPush(n, i, j) . Push labels to to-node
25: end if
26: end for
27: end for
28: tcurr ← tcurr + 1 . Repeat for next time step
29: end while
30: return ConstructPaths(IL,NI,Pk) . Construct unique paths
31: end procedure

step tcurr of 0. The main loop iterates by incrementing tcurr by 1 (Line 28), moving from
one time step to the next, until there are no more time steps in the time horizon T . In a
single iteration, for each good-supplier node and time-expanded warehouse node i at time
step tcurr, and for each edge (i, j) leaving node i, if any orders are reachable from node j
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then the LabelsPush function is called to push the labels existing at node i over edge (i, j)
to node j (Line 24). Since G has a special directed acyclic structure for which all edges from
a good-supplier or time-expanded warehouse node point to nodes at strictly later time steps,
when this main loop terminates, all possible labels have been ‘fixed’, meaning all feasible
paths with negative reduced costs are encoded by the final set of labels stored in dictionary
IL. The multilabel algorithm in Algorithm 3.3 then calls the ConstructPaths function to
create the paths from these fixed labels (Line 30), and the set of new paths that is returned
is given directly to the cutting planes algorithm that called the multilabel algorithm.

The LabelsPush function of the multilabel algorithm is described in Algorithms 3.4 to 3.5.
This function requires the current last label index (n), the node that labels are being pushed
from (i) and the node that labels are to be pushed to (j). LabelsPush first checks whether
the edge (i, j) is an inventory edge or a transport edge. If (i, j) is an inventory edge, labels
at node i are taken one at a time and pushed over the inventory edge twice, once under the
assumption that the edge is not refrigerated (Lines 5-12), and once assuming it is refrigerated
(Lines 13-21). For each of these two cases, the reduced cost and remaining shelf-life of the
pushed label is calculated (Lines 5-6, 13-14) and the bounding conditions are checked. If the
order o(n′) corresponding to the label n′ is reachable from node j, i.e. if it is not the case that
there are no extensions of the path at node j to a node satisfying order o(n′) that will result in
a feasible path, then the pushed label is instantiated and appended to the end of the current
list of potential labels Npls (potential labels pushed over an inventory edge assumed not
refrigerated) or Rpls (potential labels pushed over an inventory edge assumed refrigerated).
When this loop is complete for all labels n′ at node i, the function AddNondomLabels
is called once for each list of potential labels Npls and Rpls (Lines 22-27). If edge (i, j) is
instead a transport edge, then an equivalent procedure is conducted except only once for
each label (Lines 29-43), since there are no refrigeration assumptions needed for transport
edges. Finally, LabelsPush function returns the last index n that was updated during the
AddNondomLabels calls.

The AddNondomLabels function is described in Algorithm 3.6. AddNondomLabels
requires the current last label index and the node j that the list of potential labels pls (also
required) is being pushed to. It checks the label domination conditions before adding new
nondominated labels from pls to the list of existing labels at node j and removing existing
labels that are dominated from the list at node j. An invariant is maintained on all lists
of labels that ensures the labels are ordered so that the reduced costs are nondecreasing as
the list is traversed from left to right. Another invariant maintained on all lists of labels is
that no label in a list dominates any other label, or all labels are mutually nondominating.
Since the AddNondomLabels function maintains these invariants and potential labels are
only ever added to label lists through this function (even the initial labels at good-supplier
nodes), the reduced cost ordering and mutual nondomination invariants are never broken
and therefore never need to be ‘checked’ or ‘repaired’. These two invariants together imply
that the shelf-life remaining for the labels in a list is automatically ordered in nondecreasing
manner as well, else there would be domination.
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Algorithm 3.4 Labels Push Function, part 1

1: procedure LabelsPush(n, i, j)
2: if w(i) = w(j) then . If edge is inventory edge
3: Npls← list(), Rpls← list() . Initialize lists of potential labels
4: for all n′ ∈ NI(i) do . For each label index at node

Push label over inventory edge assuming no refrigeration
5: Nrc← rc(n′) + c(i,j) − µ(i,j) . Update reduced cost of sub-path
6: Nlr ← lr(n′) + lN(i,j) . Update remaining shelf-life of sub-path

7: for all (mc,ml) ∈MCL(j)(o(n′)) do . For each min(cost,life)
8: if mc < −Nrc(1− ε′) ∧Nlr ≥ ml then . If bounds are satisfied
9: Append(Npls, (n′, j, o(n′), Nrc,Nlr, False)) . Add pot. nonr. label

10: BreakFor
11: end if
12: end for

Push label over inventory edge assuming refrigeration
13: Rrc← rc(n′) + c(i,j) − µ(i,j) − ρw(i) . Update reduced cost of sub-path
14: Rlr ← lr(n′) + lR(i,j) . Update remaining shelf-life of sub-path

15: for all (mc,ml) ∈MCL(j)(o(n′)) do . For each min(cost,life)
16: if mc < −Rrc(1− ε′) ∧Rlr ≥ ml then . If bounds are satisfied
17: Append(Npls, (n′, j, o(n′), Rrc, Rlr, T rue)) . Add pot. refr. label
18: BreakFor
19: end if
20: end for
21: end for

Add nondominated labels for order at to-node
22: if length(Npls) > 0 then . If nonrefrigerated potential label list not empty
23: n← AddNondomLabels(n, j,Npls) . Add nondom. labels at j
24: end if
25: if length(Rpls) > 0 then . If refrigerated potential label list not empty
26: n← AddNondomLabels(n, j, Rpls) . Add nondom. labels at j
27: end if

Maintaining only nondominated labels makes the overall multilabel algorithm more efficient
because dominated labels are not useful in constructing a Pareto optimal set of paths with
respect to reduced cost and shelf-life remaining. The ordering on each list of labels makes
the AddNondomLabels more efficient because on average (but not in the worst case), it
means many fewer pairwise comparisons between potential labels and existing labels at node
j are needed to establish whether there is a dominating relationship.

AddNondomLabels is initialized at position pos = 0 in the list of existing labels at j.
For each label pl in the list of potential labels (which is ordered because the same edge
cost and shelf-life expenditure was mapped onto all labels in the list), a set of conditions is

40



Algorithm 3.5 Labels Push Function, part 2

28: else . Edge is transport edge
29: pls← list() . Initialize list of potential labels
30: for all n′ ∈ NI(i) do . For each label index at node/order

Push label over transport edge
31: rc← rc(n′) + c(i,j) . Update reduced cost of sub-path
32: lr ← lr(n′) + l(i,j) . Update remaining shelf-life of sub-path
33: for all (mc,ml) ∈MCL(j)(o(n′)) do . For each min(cost,life)
34: if mc < −rc(1− ε′) ∧ lr ≥ ml then . If bounds are satisfied
35: Append(pls, (n′, j, o(n′), rc, lr, False)) . Add pot. label
36: BreakFor
37: end if
38: end for
39: end for

Add nondominated labels for order at to-node
40: if length(pls) > 0 then . If potential label list not empty
41: n← AddNondomLabels(n, j, pls) . Add nondom. labels at j
42: end if
43: end if
44: return n
45: end procedure

checked only once. The current position pos in the existing label list NI(j) is incremented
until the reduced cost of the potential label is less than or equal to the reduced cost of the
existing label at pos or the end of the list is reached (Lines 4-6). Next, the function checks
whether the potential label is dominated by the existing label at the current position or by
the existing label at the previous position (Lines 7-9). This is the case if the reduced costs
of the labels are equal and the the life remaining of the potential label is smaller, or if the
life remaining of the previous position existing label exceeds that of the potential label. If
the potential label is dominated, it is discarded, and the next label is pulled off the potential
label list. Note that the position is not reset to 0 when this occurs, since the potential
labels are ordered by reduced cost. If the potential label is not dominated, then it is checked
whether it dominates the existing label at the current position (Lines 10-12). If not, the label
is added into the existing list at the current position (Lines 13-16). If the potential label does
dominate the existing label, the existing label is removed and the condition is checked for
the following label in the next position, and this is repeated until a nondominated existing
label is encountered. At this point, the potential label is added to the list at the current
position (Lines 13-16). After a potential label is added, the position is incremented because
the next potential label is mutually nondominating with the label that was just added.

The ConstructPaths function is described in Algorithm 3.7. ConstructPaths takes
each label at an order node or a late node satisfying an order and constructs the path that
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Algorithm 3.6 Nondominated Labels Function

1: procedure AddNondomLabels(n, j, pls)
2: pos← 0 . Initialize list position of ex. label
3: for all pl ∈ pls do . For each label in pot. labels list
4: while pos < length(NI(j)) ∧ rc(pl) > rc(IL(NI(j)(pos))) do . While not at

end and pot. rc exceeds ex. rc
5: pos← pos+ 1 . Shift to next ex.
6: end while
7: if rc(pl) = rc(IL(NI(j)(pos)))∧ lr(pl) < lr(IL(NI(j)(pos)))∨pos > 0∧ lr(pl) <
lr(IL(NI(j)(pos− 1))) then . If an ex. label dominates the pot. label

8: ContinueFor . Do not add pot., continue to next pot.
9: end if

10: while pos < length(NI(j)) ∧ rc(pl) < rc(IL(NI(j)(pos))) ∧ lr(pl) ≥
lr(IL(NI(j)(pos))) ∨ rc(pl) ≤ rc(IL(NI(j)(pos))) ∧ lr(pl) > lr(IL(NI(j)(pos))) do
. While pot. dominates ex. at current pos

11: Delete(IL(NI(j)(pos))),Delete(NI(j)(pos)) . Remove dominated ex.
12: end while
13: IL(n)← pl . Instantiate pot.
14: Insert(NI(j), pos, n) . Add pot. at current position in labels
15: n← n+ 1 . Increment current label index
16: pos← pos+ 1 . Shift to next position in labels
17: end for
18: return n
19: end procedure

corresponds to the label. The path that is constructed is known to be a feasible and negative
reduced cost path that is Pareto-optimal in terms of reduced cost and shelf-life remaining,
because only labels satisfying these conditions are maintained in the lists at each node. The
path is constructed backwards from the label in an iterative fashion by taking the predecessor
index of a current label and hashing into the IL dictionary to retrieve the predecessor label.
To calculate the cost parameter for the path that is needed in the second stage commodity
routing formulation, the flow costs of edges in the path are added cumulatively as the path is
constructed. Once constructed, the path and its flow cost parameter are added as a pair to
the set of new paths Pnew

k . ConstructPaths returns this set of new paths to FindPaths,
which immediately returns it to the cutting planes algorithm.
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Algorithm 3.7 Path Construction Function

1: procedure ConstructPaths(IL,NI,Pk)
2: Pnew

k = ∅ . Begin with empty new paths set
3: for all (w, t, g) ∈ Ok do . For each order
4: for tlate ∈ {0, 1, . . . , tlate(w,t,g)} do . For each time step satifying order

5: for n′ ∈ NI(w, t+ tlate) do . For each index at (late) order node
6: if o(n′) = (w, t, g) then . If order of label matches current order
7: j ← (w, t+ tlate) . Initialize current node variable
8: ppairs← list(j, status(IL(n′))) . Initialize path (node, status) list
9: cost← tlate × clate(w,t,g) . Begin with cost equal to lateness penalty

Build path pairs list from (late) order node backwards to good-supplier node
10: while n′ 6= 0 do . Loop until reach label at good-supplier node
11: i← node(IL(n′)) . Update next node variable
12: n′ ← pred(IL(n′)) . Update current index to predecessor index
13: cost← cost+ c(i,j) . Update cumulative cost with edge cost
14: j ← node(IL(n′)) . Get node corresponding to label index
15: Append(ppairs, (j, status(IL(n′)))) . Add new pair to list
16: end while
17: ( , s, t′)← i . Get supplier and time for good-supplier node i
18: cost← cost+ c((s,t′),(g,s,t′)) . Update cost with purchase cost
19: Append(ppairs, ((s, t′), False)) . Add pair for supplier node to list
20: Append(ppairs, (‘src′, False)) . Add pair for supersource to list
21: Reverse(ppairs) . Reverse list so ordered from supersource
22: if (ppairs, cost) /∈ Pk then . If path not in restricted set of paths
23: Pnew

k ← Pnew
k ∪ (ppairs, cost) . Add path to new paths set

24: end if
25: end if
26: end for
27: end for
28: end for
29: return Pnew

k . Return unique new paths
30: end procedure
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4 Computational Testing

4.1 Software and Solvers

The Benders decomposition, constraint generation, and multilabel constrained shortest path
algorithms were coded in Python 2.7. NetworkX is a Python package “for the creation,
manipulation, and study of the structure, dynamics, and functions of complex networks”,
and it was used to represent the graph G. Gurobi 5.0.1 was used to solve the MIP 1R-R and
the continuous LPs 2CR-DR(k) on a quad-core Intel i7 processor with 8GB of memory.

The basic parameters for warehouses, suppliers, and edges are inputted or created in a
GIS (geographical information systems) software package called Quantum GIS. The data
is in GIS table format and is exported to CSV files. Quantum GIS produces geographical
visualizations of the supply chain such as Figure 12.

4.2 Network Graph Generation

In Quantum GIS, warehouses and suppliers are placed on a world map and parameters such
as supply and inventory costs, capacities, and inventory storage shelf-life expenditures are
inputted to columns in GIS database tables. Nodes are then connected via multisegment arcs
corresponding to transport routes, and using GIS functions, the lengths of the multisegment
arcs are calculated and saved in the arc database table. This is not the distance between
the nodes, but the sum of the length of the segments of an arc, so it is representative of the
distances traveled by ships or land vehicles on roads that are not ‘as the crow flies’.

The GIS data tables are exported to CSV format and read into spreadsheets. In spreadsheet
format, the node and transport and arc route data is manipulated with simple functions
used to estimate costs of transport, the shelf-life expenditure on transport routes and during
refrigerated and nonrefrigerated storage at warehouses, and other node and edge parameters
needed to construct G. In a separate file, the number of time steps |T | in the time horizon of
the decision-maker is specified. For the ‘base class’ used in computational testing, 108 time
periods are used, representing 1 week time steps over the course of a two-year period plus
an initialization period of four weeks. A Python function is called to automate the process
of constructing G from the GIS data.

The World Food Programme does not have a public database with information about its
warehouses, suppliers, and transport routes. There is little data available on demand and
need for SNPs since they are relatively new and production falls short of need. Information
gathered from conversations with WFP employees and from the WFP website has been
combined with guesswork to create data for several international suppliers, country- and
regional-level warehouses, and directed transport routes in a GIS database. Figure 12,
produced in Quantum GIS, represents this information on a map of the world. Information
from the GIS databases is excerpted in Tables 10 to 12.
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Table 10: Suppliers Data

s ∈ S m (c,m)g7 (c,m)g13 (c,m)g26 (c,m)g52

sFra 7000 (20, 5000) (25, 7000) (30, 3000) (0, 0)
sPak 2000 (0, 0) (0, 0) (25, 1000) (20, 2000)
sGha 800 (15, 600) (20, 800) (0, 0) (35, 200)
sBra 3000 (0, 0) (30, 3000) (40, 2000) (0, 0)
sTan 2000 (20, 1500) (0, 0) (10, 2000) (0, 0)

Table 11: Warehouses Data

w ∈ W crw cw mw lrw lw

pAlg 5000 0.13 8000 0.2 0.8
pAng 6000 0.33 4000 0.2 1
pBan 9000 0.23 6000 0.2 1.1
pBra 8000 0.33 7000 0.2 0.8
pChi 4000 0.2 6000 0.2 0.9

...
...

...
...

...
...

Table 12: Transport Routes Data

i ∈ N j ∈ N t′ − t c(i,j) m(i,j) l(i,j)

pAlg wAlg 2 2 750 3
pAng wZam 1 1.6 250 1.5
pAng wNam 1 1.6 250 1.5
pBan wIndi 1 1.6 1500 1.5
pBan wBhu 1 1.2 500 1.5

...
...

...
...

...
...

4.3 Stochastic Scenario and Order Generation

Order generation requires a set of parameters on the good types, and these are specified in a
spreadsheet file. Goods are likely to be needed with different frequencies, and it is assumed
that these relative frequencies are consistent over scenarios, so a probability of an order
having good type g ∈ G is specified. Each good type g has two parameters for the lower and
upper bounds on the maximum shelf-life expenditure on paths to a node (w, t) corresponding
to order (w, t, g). Finally, each good type g has two parameters for the lower and upper
bounds on the number of late periods for which demand for the good can be satisfied. The
goods differ in their shelf-lives, and scientific studies are still being conducted to ascertain
how the nutritional qualities of specialized nutrition products depend on storage conditions.
For the base class, Table 13 displays the goods data. Four good types are used with four
different shelf-lives, and it is assumed the shelf-lives are for average tropical atmospheric
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conditions. Goods are named according to their shelf-lives, so at the lower extreme, g7 has
7 weeks of shelf-life and at the upper extreme, g52 has 1 year of shelf-life.

Table 13: Goods Data

g ∈ G pr(good)g max l(w,t,g) min l(w,t,g) min tlate(w,t,g) max tlate(w,t,g)

g7 0.2 5 2 1 2
g13 0.3 8 2 1 3
g26 0.3 16 4 2 3
g52 0.2 37 4 2 5

Edge flow cost, capacity, and shelf-life expenditure parameters are assumed to be constant
over time, and orders and demand quantities are stochastic. The number of scenarios to
be generated, |K|, is varied to determine how the algorithms scale, and for the base class
four scenarios are used. Each scenario k ∈ K has orders drawn from the same uniform
distribution over time-expanded warehouses. Associated with k is the scenario probability
αk, randomly chosen and normalized such that

∑
k∈K αk = 1.

An important parameter pr(node) describes the probability that a time-expanded warehouse
node (w, t) is selected as a potential order node. This parameter determines the expected
number of orders on the network over the time horizon, and it is varied in the next section to
determine how the algorithms scale with number of orders. For the base class, pr(node) =
0.01. No orders are generated on time-expanded warehouse nodes during the 4 weeks of
initialization. A parameter pr(order) = 0.5 specifies the probability of each additional good
g ∈ G being selected to potentially create an order (w, t, g) at the node (w, t). If the good
g is selected for the node, then the probability that an order (w, t, g) is actually created at
the node is determined by pr(good)g, which differs for each good and is specified in Table
reftab:goods. There can only be one order per good type at a node, but there can be multiple
orders at a node, each corresponding to a different good type.

Once an order (w, t, g) is created, the order parameters need to be generated from distri-
butions. The demand quantity do associated with order o = (w, t, g) is generated from a
truncated normal distribution defined by a minimum demand bound min(d) = 500 units,
a mean demand mean(d) = 3000 units, and a standard deviation of demand sd(d) = 2000
units. The cost of unmet demand cuo is generated from a uniform distribution between
lower and upper bound parameter values, min(cu) = 10 currency units and max(cu) = 100
currency units.

The directed acyclic graphG for the base class has |N | = 10876 nodes, |E| = 31771 edges, and
an average in-degree equal to average out-degree of 2.92. The number of warehouses is 75, and
since there are 108 periods, there are 8100 time-expanded warehouse nodes. The base class
instance has the following numbers of scenarios: |O|1 = 45, |O|2 = 38, |O|3 = 45, |O|4 = 55.
Using this problem instance, several different options for parameters governing the Benders
decomposition and second stage cutting planes algorithms are tested. The standard options
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used for algorithmic testing are default automatic perturbation, no manual perturbation,
no removing of path cuts in the second stage problems, and solving a single second stage
problem after each first stage iteration (cycling over the scenarios). The optimality gap
metric used in testing was the average over each scenario k ∈ K of the relative gap between
the second stage optimal objective Z ′k and the first stage maximum cost variable Zk:

average relative gap =
1

|K|
∑
k∈K

(Z ′k − Z∗k)

Z ′k

4.4 Options for Removing Paths in the Second Stage Problem

Several different rules for removing path cuts from the relaxed second stage dual problems
were tested. Cuts could be removed either once immediately after a Benders iteration (‘initial
drop rule’), or between every iteration of the second stage cutting planes algorithm (’looping
drop rule’), or both. Solve time was averaged over five runs of the algorithm. The rules
tested were as follows.

ds delete paths with slack higher than 50.0 (from experience with the base class, this value
on average removed the 10% of cuts with the highest slack)

ka keep all path cuts from previous solve

Table 14: Effect of Rules for Removing Path Cuts Before Solving Second Stage Problem

initial drop rule looping drop rule average relative gap time (s)

ka ka 0.000 282
ka ds 0.000 275
ds ka 0.000 332
ds ds 0.000 318

For each combination of rules used, the problem solved to optimality. It appears that com-
putational performance for the base class was improved by keeping all cuts from the last
solve following a Benders master iteration. Deleting paths with a high slack between every
second stage cutting planes iteration seems to have had little effect.

4.5 Benders Subproblems to Solve after a Master Iteration

Three different rules for selecting which of the |K| second stage problems 2CR-DR(K) to
re-solve after each Benders master iteration are tested. Note that any of the selected 2CR-
DR(K)s must currently satisfy the second stage problem re-solve condition, that the objective
value Z ′k of the 2CR-DR(K) exceeds the corresponding variable Zk in the 1R-R.

Rule ‘all’ solves all of the second stage problems satisfying the re-solve condition before
another 1R-R iteration. This means that the same set of refrigeration decisions (R̄) is
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given to all the 2CR-DR(K)s. The ‘next’ rule picks the next k ∈ K that is in the set of
2CR-DR(K)s satisfying the re-solve condition. This rule cycles over the 2CR-DR(K)s that
need to be re-solved, regardless of the size of the relative gap, so it takes a breadth-first
approach. Finally, the ‘largest gap’ rule is similar to the ‘next’ rule in that it only solves one
2CR-DR(K) at a time, but the way it selects the k is different. It picks the subproblem for

k such that the relative gap
(Z′k−Z

∗
k)

Z′k
between the 2CR-DR(K) objective value and optimal

value of the corresponding 1R-R variable Z∗k is largest. This rule takes a more depth-first
approach than the ‘next’ rule. Note that parallelization of the solution process of multiple
2CR-DR(K)s is possible when using the ‘all’ rule, but this was not implemented.

Table 15: Effect of Different Second Stage Problem Re-solve Rules

rule average relative gap time (s) iters for 1R-R iters for 2CR-DR(k)

all 0.000 370 24 220, 93, 162, 303
next 0.000 281 38 180, 74, 98, 286

largest gap 0.000 308 37 185, 82, 173, 279

The ‘next’ rule appears to be the most effective in terms of overall solve time for the base
class. The ‘all’ rule required fewer Benders master iterations overall but a greater number
of second stage iterations. This is because multiple cuts are added between each master
iteration, so more information is received by the Benders master problem from the second
stage problems, but the second stage problems receive updated refrigeration decisions less
frequently and thus require a greater number of solves. Overall, the ‘all’ rule performed
significantly worse than the ‘next’ rule. The ‘largest gap’ rule was slightly slower than the
‘next’ rule, taking a similar number of master iterations but requiring significantly more
solves for only one of the scenario subproblems.

4.6 Testing Scaleability of Algorithms with Different Problem Classes

Through testing different algorithmic options on the base class, a relatively efficient set of
algorithmic options was found. For testing on different problem classes, these options are
kept constant. The ‘next’ rule is used for selecting the set of second stage problems to re-
solve after each Benders master problem, the ‘keep all’ rule is used to drop path cuts once
after each Benders iteration, and the ‘delete high slack’ rule is used between every iteration
of the cutting planes algorithm.

In this section, the size of the RCR problem is varied along several important dimensions
to determine how the solution approach scales with problem size. This is useful for gaining
insight into the bottlenecks of the algorithm and what types of problems it is likely to be
capable of solving efficiently. Problem size is varied according to the number of scenarios
(|K|), the number of post-initialization periods (|T |), and the expected number of orders
per scenario (E(|O|), through changing pr(node)). Along each dimension, three different
values parameter values (‘low’, ‘med’, and ‘high’) are tested. In each case, the ‘med’ level
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Table 16: Problem Classes

class scenarios (|K|) periods (|T |) pr(node)

base 4 108 0.01

Vary |K|
k-low 1 108 0.01
k-med 4 108 0.01
k-high 16 108 0.01

Vary |T |
t-1y 4 56 0.01
t-2y 4 108 0.01
t-4y 4 212 0.01

Vary pr(node):
changes E(|O|)

o-low 4 108 0.0025
o-med 4 108 0.01
o-high 4 108 0.04

correponds to the base class, the ‘low’ level to half of base class parameter, and the ‘high’
level to double the base class parameter. Note that the number of periods parameter values
have the initialization periods (4 weeks in each case) added after the base class parameter
of 104 non-initialization periods is doubled and halved to get the ‘high’ and ‘low’ levels
respectively.

Table 17: Solution Statistics for Different Numbers of Scenarios

class |K| average relative gap time (s) iters for 1R-R

k-low 1 0.000 92 21
k-med 4 0.000 281 38
k-high 16 0.000 833 90

Table 18: Solution Statistics for Different Time Horizons

class |T | average relative gap time (s) iters for 1R-R

t-1y 56 0.000 36 29
t-2y 108 0.000 281 38
*t-4y 212 0.250 - 228

Solve terminated because time exceeded 45 minutes

The computational results in Tables 17 to 19 suggest that solution time increases slightly
slower than linearly with the number of scenarios and with the expected number of orders.
The number of Benders iterations also increased approximately linearly with the number of
scenarios, but was not significantly affected by the expected number of orders. Doubling the
length of the time horizon caused what appears to be an exponential increase in problem
difficulty as measured by both solution time and the number of Benders master iterations.
While a problem on a network with 56 time periods was solved in a little over half a minute,
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Table 19: Solution Statistics for Different Expected Numbers of Orders

class pr(node) average relative gap time (s) iters for 1R-R

o-low 0.0025 0.000 83 31
o-med 0.01 0.000 281 38
o-high 0.04 0.000 949 37

a problem with double the number of time periods took almost five minutes, and a further
doubling caused the problem to take longer than 45 minutes to solve. These results make
sense because the number of paths is exponential in the size of the graph G, and the only
dimension tested that affects the size of G was the number of time periods.
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5 Conclusions and Future Work

The World Food Programme, in considering how to expand the distribution of specialized
nutrition products, faces the problem of deciding which warehouses to refrigerate and how
to route these perishable goods through its distribution network. A large-scale two-stage
stochastic program was formulated for the refrigeration and commodity routing problem
(RCR) on a time-expanded network. This model is an example of the fixed-charge network
problem, which is known to be NP-hard.

A Benders decomposition was used to separate the first stage refrigeration problem and
the second stage commodity routing problem for each scenario. Following a re-definition
of path variables, a cutting planes algorithm was used to solve the second stage problems
using a novel multilabel constrained shortest path algorithm. The overall solution procedure
was shown to be powerful, leading to an optimal solution on a realistic problem size of 75
warehouses, 108 time periods, and nearly 200 demand orders in four scenarios in around five
minutes.

Future work will involve developing a decision tool for the World Food Programme’s opera-
tional and tactical level decision-making on the distribution network for specialized nutrition
products. A multi-period stochastic model would better account for the uncertainty that
the WFP faces. A decision problem that makes the pre-positioning of goods at warehouses
in preparation for natural disasters would benefit from such a multi-period model of uncer-
tainty. Since hunger in some parts of the world is highly seasonal, demand for goods could
be modeled on annual cycles.

A deeper theoretical and practical analysis of the complexity of the multilabel constrained
shortest path algorithm developed for this problem is called for. Parallelization of the algo-
rithm, the use of more efficient data structures, and implementing stronger bounding ideas
for paths would likely lead to improvements in the solve time.
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